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Cutting Plane Methods II 

Gomory-Chvátal cuts 

Reminder 

•	 P = {x ∈ Rn : Ax ≤ b} with A ∈ Zm×n , b ∈ Zm . 

For λ ∈ [0, 1)m such that λ�A ∈ Zn ,• 

(λ�A)x ≤ �λ�b�


is valid for all integral points in P .


Stable Sets 

Definitions 

•	 Let G = (V,E) be an undirected graph. 

•	 S ⊆ V is stable if {u, v} ∈ E : u, v ∈ S = ∅. 

•	 Stable sets are the integer solutions to: 

xu + xv ≤ 1 for all {u, v} ∈ E 

xv ≥ 0 for all v ∈ V 

•	 The stable set polytope is 

Pstab(G) = conv x ∈ {0, 1}V : xu + xv ≤ 1 for all u, v ∈ E 

Odd Cycle Inequalities 

•	 An odd cycle C in G consists of an odd number of vertices 0, 1, . . . , 2k and edges {i, i + 1}. 

The odd cycle inequality 

xv ≤
|C| − 1 

2 
v∈C 

is valid for Pstab(G). 

•	 It has a cutting-plane proof that only needs one step of rounding. 

•	 The separation problem for the class of odd cycle inequalities can be solved in polynomial 
time: 

•	 Let y ∈ QV . 

1 



� 

� 

� �	 � 

•	 We may assume that y ≥ 0 and yu + yv ≤ 1 for all {u, v} ∈ E. 

•	 Define, for each edge e = {u, v} ∈ E, ze := 1 − yu − yv. 

•	 So ze ≥ 0 for all e ∈ E. 

•	 y satisfies all odd cycle constraints iff z satisfies 

ze ≥ 1 for all odd cycles C. 
e∈C 

•	 If we view ze as the “length” of edge e, then y satisfies all odd cycle inequalities iff the length 
of a shortest odd cycle is at least 1. 

Shortest Odd Cycles 

•	 A shortest odd cycle can be found in polynomial time: 

•	 Split each node v ∈ V into two nodes v1 and v2. 

•	 For each arc (u, v) create new arcs (u1, v2) and (u2, v1), both of the same length as (u, v). 

•	 Let D� be the digraph constructed this way. 

•	 For each v ∈ V find the shortest (v1, v2)-path in D�. 

•	 The shortest among these paths gives us the shortest odd cycle. 

Perfect Matchings 

Definitions 

•	 Let G = (V,E) be an undirected graph. 

•	 A matching M ⊆ E is perfect if |M | = |V |/2. 

•	 Perfect matchings are the integer solutions to: 

xe = 1	 for all v ∈ V 
e∈δ(v) 

xe ≥ 0	 for all e ∈ E 

•	 The perfect matching polytope is 

PPM(G) = conv x ∈ {0, 1}E : xe = 1 for all v ∈ V 
e∈δ(v) 
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Odd Cut Inequalities 

•	 The following inequalities are valid for PPM(G): 

xe ≥ 1 for all U ⊂ V, |U | odd 
e∈δ(U) 

•	 Each has a cutting-plane proof that requires rounding only once. 

•	 The separation problem for this class of inequalities can be solved in polynomial time. 

{0,1/2}-cuts 

Definition 

Let 
F1/2(A, b) := (λ�A)x ≤ �λ�b� : λ ∈ {0, 1/2}m, λ�A ∈ Zn


be the family of all {0,1/2}-cuts.


Question: Can one separate efficiently over F1/2(A, b)? 

NP-Hardness 

Theorem 1. Let A ∈ Zm×n , b ∈ Zm, and y ∈ Qn with Ay ≤ b. Checking whether y violates some 
inequality in F1/2(A, b) is NP-complete. 

Preliminaries 

•	 Let P = {x : Ax ≤ b} and y ∈ P . 

y violates a {0,1/2}-cut iff there exists µ ∈ {0, 1}m such that 

–	 µ�A ≡ 0 (mod 2), 

–	 µ�b ≡ 1 (mod 2), and 

–	 µ�(b − Ax̂) < 1. 

(Because µ�b = 2k + 1 for some k ∈ Z, and µ�Ax ≤ 2k can be written as µ�(b − Ax) ≥ 1.) 

An NP-complete Problem 

•	 Given Q ∈ {0, 1}r×t , d ∈ {0, 1}r , and a positive integer K, decide whether there exists 
z ∈ {0, 1}t with at most K 1’s such that Qz ≡ d (mod 2). 
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Reduction 

Let w := 1 1 and consider P = {x ∈ Rn : Ax ≤ b} with:• K+1 

⎛ ⎞ � � � 0r 
Q� 

A := 
d� 2It+1 , b := 

2 · 
1 
1t 

, y := ⎝ 1t −
1

1 w� ⎠ 
2 

2 

Proof Sketch 
Step 1: Show (A, b, y) is a valid instance. 

•	 y ∈ P : Observe that b − Ay = (w1, . . . , wt, 0)� ≥ 0. 

Proof sketch 
Step 2: Equivalence of “Yes”-instances. 

•	 ∃µ ∈ {0, 1}m with µ�A ≡ 0 (mod 2), µ�b ≡ 1 (mod 2) iff ∃z ∈ {0, 1}t such that Qz ≡ d (mod 
2): 

Q� 2	 1t 

A := 
d� 2It+1 , b := · 

1 

Proof sketch 
Step 2: Equivalence of “Yes”-instances. 

∃µ s.th. µ�(b − Ay) < 1 iff ∃z s.th. w�z < 1 ( 1�z ≤ K):•	 ⇔ 

µ �(b − Ay) = µ �(w1, . . . , wt, 0)� 

Primal Separation 

The Primal Separation Problem 

•	 Let P be a 0/1-polytope. 

•	 Given a point y ∈ Qn and a vertex x̂ ∈ P , find c ∈ Zn and d ∈ Z such that cx ≤ d for all 
x ∈ P , cx̂ = d, and cy > d, if they exist. 

Theorem 2. For 0/1-polytopes, optimization and primal separation are polynomial-time equivalent. 
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Perfect Matchings 

•	 Let x̂ be the incidence vector of a perfect matching M .


Let y ∈ QE be a point satisfying the node-degree equations.
• + 

•	 We have to find a min-weight odd cut (w.r.t. the edge weights given by y) among those that 
intersect M in exactly one edge. 

•	 Let {s, t} ∈ M be an arbitrary edge of M . 

•	 Let G{s,t} be the graph obtained from G by contracting the end nodes of all edges e ∈
M \ {{s, t}}. 

•	 The minimum weight odd cut among those that contain exactly the edge {s, t} of M can be 
computed by finding a min-weight {s, t}-cut in G{s,t}. 

Theorem 3. The primal separation problem for the perfect matching polytope of a graph G = (V,E) 
can be solved with |V |/2 max-flow computations. 

Corollary 4. A minimum weight perfect matching can be computed in polynomial time. 

Proof Sketch 

Primal Separation 

⇓ 

Verification 

⇓ 

Augmentation 

⇓ 

Optimization 

The Verification Problem 

•	 Let P ⊆ Rn be a 0/1-polytope. 

•	 Given an objective function c ∈ Zn and a vertex x̂ ∈ P , decide whether x̂ minimizes cx over 
P . 
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Primal Separation Verification ⇒ 

•	 Let C be the cone defined by the linear inequalities of P that are tight at x̂. 

•	 By LP duality, x̂ minimizes cx over P iff x̂ minimizes cx over C. 

•	 By the equivalence of optimization and separation, minimizing cx over C is equivalent to 
solving the separation problem for C. 

•	 One can solve the separation problem for C by solving the primal separation problem for P 
and x̂. 

The Augmentation Problem 

•	 Let P ⊆ Rn be a 0/1-polytope. 

•	 Given an objective function c ∈ Zn and a vertex x ∈ P , find a vertex x� ∈ P such that 
cx� < cx, if one exists. 

Verification Augmentation ⇒ 

•	 We may assume that x = 1. 

•	 Use “Verification” to check whether x is optimal. If not: 

M := n
i=1 |ci| + 1; 

for i = 1 to n do

ci := ci − M ;

call the verification oracle with input x and c;

if x is optimal then


yi := 0;

ci := ci + M


else 
yi := 1


return y.


Augmentation Optimization⇒ 

•	 We may assume that c ≥ 0. 

•	 Let C := max{ci : i = 1, . . . , n}, and K := �log C�. 

•	 For k = 0, . . . ,K, define ck by ck := �ci/2K−k�, i = 1, . . . , n.i 

for k = 0, 1, . . . ,K do

while xk is not optimal for ck do


xk := aug(xk, ck)

xk+1 := xk


return xK+1 . 
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Running Time 

•	 O(log C) many phases. 

•	 At the end of phase k − 1, xk is optimal with respect to ck−1, and hence for 2ck−1 . 

•	 Moreover, ck = 2ck−1 + c(k), for some 0/1-vector c(k). 

•	 If xk+1 denotes the optimal solution for ck at the end of phase k, we obtain


c k(x k − x k+1) = 2c k−1(x k − x k+1) + c(k)(x k − x k+1) ≤ n.


•	 Thus, the algorithm determines an optimal solution by solving at most O(n log C) augmen
tation problems. 
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