Cutting Plane Methods II

Gomory-Chvátal cuts

Reminder

- $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ with $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$.
- For $\lambda \in[0,1)^{m}$ such that $\lambda^{\top} A \in \mathbb{Z}^{n}$,

$$
\left(\lambda^{\top} A\right) x \leq\left\lfloor\lambda^{\top} b\right\rfloor
$$

is valid for all integral points in P.

Stable Sets

Definitions

- Let $G=(V, E)$ be an undirected graph.
- $S \subseteq V$ is stable if $\{\{u, v\} \in E: u, v \in S\}=\emptyset$.
- Stable sets are the integer solutions to:

$$
\begin{array}{rrr}
x_{u}+x_{v} & \leq 1 & \text { for all }\{u, v\} \in E \\
x_{v} & \geq 0 & \text { for all } v \in V
\end{array}
$$

- The stable set polytope is

$$
P_{\text {stab }}(G)=\operatorname{conv}\left\{x \in\{0,1\}^{V}: x_{u}+x_{v} \leq 1 \text { for all } u, v \in E\right\}
$$

Odd Cycle Inequalities

- An odd cycle C in G consists of an odd number of vertices $0,1, \ldots, 2 k$ and edges $\{i, i+1\}$.
- The odd cycle inequality

$$
\sum_{v \in C} x_{v} \leq \frac{|C|-1}{2}
$$

is valid for $P_{\text {stab }}(G)$.

- It has a cutting-plane proof that only needs one step of rounding.
- The separation problem for the class of odd cycle inequalities can be solved in polynomial time:
- Let $y \in \mathbb{Q}^{V}$.
- We may assume that $y \geq 0$ and $y_{u}+y_{v} \leq 1$ for all $\{u, v\} \in E$.
- Define, for each edge $e=\{u, v\} \in E, z_{e}:=1-y_{u}-y_{v}$.
- So $z_{e} \geq 0$ for all $e \in E$.
- y satisfies all odd cycle constraints iff z satisfies

$$
\sum_{e \in C} z_{e} \geq 1 \text { for all odd cycles } C \text {. }
$$

- If we view z_{e} as the "length" of edge e, then y satisfies all odd cycle inequalities iff the length of a shortest odd cycle is at least 1 .

Shortest Odd Cycles

- A shortest odd cycle can be found in polynomial time:
- Split each node $v \in V$ into two nodes v_{1} and v_{2}.
- For each arc (u, v) create new arcs $\left(u_{1}, v_{2}\right)$ and $\left(u_{2}, v_{1}\right)$, both of the same length as (u, v).
- Let D^{\prime} be the digraph constructed this way.
- For each $v \in V$ find the shortest $\left(v_{1}, v_{2}\right)$-path in D^{\prime}.
- The shortest among these paths gives us the shortest odd cycle.

Perfect Matchings

Definitions

- Let $G=(V, E)$ be an undirected graph.
- A matching $M \subseteq E$ is perfect if $|M|=|V| / 2$.
- Perfect matchings are the integer solutions to:

$$
\begin{aligned}
\sum_{e \in \delta(v)} x_{e}=1 & \text { for all } v \in V \\
x_{e} \geq 0 & \text { for all } e \in E
\end{aligned}
$$

- The perfect matching polytope is

$$
P_{\mathrm{PM}}(G)=\operatorname{conv}\left\{x \in\{0,1\}^{E}: \sum_{e \in \delta(v)} x_{e}=1 \text { for all } v \in V\right\}
$$

Odd Cut Inequalities

- The following inequalities are valid for $P_{\mathrm{PM}}(G)$:

$$
\sum_{e \in \delta(U)} x_{e} \geq 1 \text { for all } U \subset V,|U| \text { odd }
$$

- Each has a cutting-plane proof that requires rounding only once.
- The separation problem for this class of inequalities can be solved in polynomial time.

\{0,1/2\}-cuts

Definition

- Let

$$
\mathcal{F}_{1 / 2}(A, b):=\left\{\left(\lambda^{\top} A\right) x \leq\left\lfloor\lambda^{\top} b\right\rfloor: \lambda \in\{0,1 / 2\}^{m}, \lambda^{\top} A \in \mathbb{Z}^{n}\right\}
$$

be the family of all $\{0,1 / 2\}$-cuts.

$$
\text { Question: Can one separate efficiently over } \mathcal{F}_{1 / 2}(A, b) \text { ? }
$$

NP-Hardness

Theorem 1. Let $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$, and $y \in \mathbb{Q}^{n}$ with $A y \leq b$. Checking whether y violates some inequality in $\mathcal{F}_{1 / 2}(A, b)$ is NP-complete.

Preliminaries

- Let $P=\{x: A x \leq b\}$ and $y \in P$.
y violates a $\{0,1 / 2\}$-cut iff there exists $\mu \in\{0,1\}^{m}$ such that
- $\mu^{\top} A \equiv 0(\bmod 2)$,
$-\mu^{\top} b \equiv 1(\bmod 2)$, and
$-\mu^{\boldsymbol{\top}}(b-A \hat{x})<1$.
(Because $\mu^{\top} b=2 k+1$ for some $k \in \mathbb{Z}$, and $\mu^{\top} A x \leq 2 k$ can be written as $\mu^{\top}(b-A x) \geq 1$.)

An NP-complete Problem

- Given $Q \in\{0,1\}^{r \times t}, d \in\{0,1\}^{r}$, and a positive integer K, decide whether there exists $z \in\{0,1\}^{t}$ with at most $K 1$'s such that $Q z \equiv d(\bmod 2)$.

Reduction

- Let $w:=\frac{1}{K+1} \mathbf{1}$ and consider $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ with:

$$
A:=\left(\begin{array}{c|c}
Q^{\top} & 2 I_{t+1} \\
d^{\top} & \mid
\end{array}\right), b:=\binom{2 \cdot \mathbf{1}^{t}}{1}, y:=\left(\begin{array}{c}
\mathbf{0}^{r} \\
\mathbf{1}^{t}-\frac{1}{2} w^{\top} \\
\frac{1}{2}
\end{array}\right)
$$

Proof Sketch

Step 1: Show (A, b, y) is a valid instance.

- $y \in P$: Observe that

$$
b-A y=\left(w_{1}, \ldots, w_{t}, 0\right)^{\boldsymbol{\top}} \geq 0
$$

Proof sketch

Step 2: Equivalence of "Yes"-instances.

- $\exists \mu \in\{0,1\}^{m}$ with $\mu^{\top} A \equiv 0(\bmod 2), \mu^{\top} b \equiv 1(\bmod 2)$ iff $\exists z \in\{0,1\}^{t}$ such that $Q z \equiv d(\bmod$ $2)$:

$$
A:=\left(\begin{array}{c|c}
Q^{\top} & 2 I_{t+1} \\
d^{\top} &
\end{array}\right), b:=\binom{2 \cdot \mathbf{1}^{t}}{1}
$$

Proof sketch

Step 2: Equivalence of "Yes"-instances.

- $\exists \mu$ s.th. $\mu^{\boldsymbol{\top}}(b-A y)<1$ iff $\exists z$ s.th. $w^{\boldsymbol{\top}} z<1\left(\Leftrightarrow \mathbf{1}^{\boldsymbol{\top}} z \leq K\right)$:

$$
\mu^{\top}(b-A y)=\mu^{\top}\left(w_{1}, \ldots, w_{t}, 0\right)^{\top}
$$

Primal Separation

The Primal Separation Problem

- Let P be a 0/1-polytope.
- Given a point $y \in \mathbb{Q}^{n}$ and a vertex $\hat{x} \in P$, find $c \in \mathbb{Z}^{n}$ and $d \in \mathbb{Z}$ such that $c x \leq d$ for all $x \in P, c \hat{x}=d$, and $c y>d$, if they exist.

Theorem 2. For 0/1-polytopes, optimization and primal separation are polynomial-time equivalent.

Perfect Matchings

- Let \hat{x} be the incidence vector of a perfect matching M.
- Let $y \in \mathbb{Q}_{+}^{E}$ be a point satisfying the node-degree equations.
- We have to find a min-weight odd cut (w.r.t. the edge weights given by y) among those that intersect M in exactly one edge.
- Let $\{s, t\} \in M$ be an arbitrary edge of M.
- Let $G_{\{s, t\}}$ be the graph obtained from G by contracting the end nodes of all edges $e \in$ $M \backslash\{\{s, t\}\}$.
- The minimum weight odd cut among those that contain exactly the edge $\{s, t\}$ of M can be computed by finding a min-weight $\{s, t\}$-cut in $G_{\{s, t\}}$.

Theorem 3. The primal separation problem for the perfect matching polytope of a graph $G=(V, E)$ can be solved with $|V| / 2$ max-flow computations.

Corollary 4. A minimum weight perfect matching can be computed in polynomial time.

Proof Sketch

Primal Separation
\Downarrow
Verification
\Downarrow
Augmentation
\Downarrow
Optimization

The Verification Problem

- Let $P \subseteq \mathbb{R}^{n}$ be a $0 / 1$-polytope.
- Given an objective function $c \in \mathbb{Z}^{n}$ and a vertex $\hat{x} \in P$, decide whether \hat{x} minimizes $c x$ over P.

Primal Separation \Rightarrow Verification

- Let C be the cone defined by the linear inequalities of P that are tight at \hat{x}.
- By LP duality, \hat{x} minimizes $c x$ over P iff \hat{x} minimizes $c x$ over C.
- By the equivalence of optimization and separation, minimizing $c x$ over C is equivalent to solving the separation problem for C.
- One can solve the separation problem for C by solving the primal separation problem for P and \hat{x}.

The Augmentation Problem

- Let $P \subseteq \mathbb{R}^{n}$ be a $0 / 1$-polytope.
- Given an objective function $c \in \mathbb{Z}^{n}$ and a vertex $x \in P$, find a vertex $x^{\prime} \in P$ such that $c x^{\prime}<c x$, if one exists.

Verification \Rightarrow Augmentation

- We may assume that $x=1$.
- Use "Verification" to check whether x is optimal. If not:

```
\(M:=\sum_{i=1}^{n}\left|c_{i}\right|+1 ;\)
for \(i=1\) to \(n\) do
    \(c_{i}:=c_{i}-M ;\)
    call the verification oracle with input \(x\) and \(c\);
    if \(x\) is optimal then
        \(y_{i}:=0\);
        \(c_{i}:=c_{i}+M\)
    else
        \(y_{i}:=1\)
return \(y\).
```


Augmentation \Rightarrow Optimization

- We may assume that $c \geq 0$.
- Let $C:=\max \left\{c_{i}: i=1, \ldots, n\right\}$, and $K:=\lfloor\log C\rfloor$.
- For $k=0, \ldots, K$, define c^{k} by $c_{i}^{k}:=\left\lfloor c_{i} / 2^{K-k}\right\rfloor, i=1, \ldots, n$.
for $k=0,1, \ldots, K$ do
while x^{k} is not optimal for c^{k} do
$x^{k}:=\operatorname{AUG}\left(x^{k}, c^{k}\right)$
$x^{k+1}:=x^{k}$
return x^{K+1}.

Running Time

- $\mathrm{O}(\log C)$ many phases.
- At the end of phase $k-1, x^{k}$ is optimal with respect to c^{k-1}, and hence for $2 c^{k-1}$.
- Moreover, $c^{k}=2 c^{k-1}+c(k)$, for some $0 / 1$-vector $c(k)$.
- If x^{k+1} denotes the optimal solution for c^{k} at the end of phase k, we obtain

$$
c^{k}\left(x^{k}-x^{k+1}\right)=2 c^{k-1}\left(x^{k}-x^{k+1}\right)+c(k)\left(x^{k}-x^{k+1}\right) \leq n .
$$

- Thus, the algorithm determines an optimal solution by solving at most $\mathrm{O}(n \log C)$ augmentation problems.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

