6.859/15.083 Integer Programming and Combinatorial Optimization

Fall 2009

Cutting Plane Methods II

Gomory-Chvátal cuts

Reminder

- $P = \{x \in \mathbb{R}^n : Ax \le b\}$ with $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m$.
- For $\lambda \in [0,1)^m$ such that $\lambda^{\intercal} A \in \mathbb{Z}^n$,

$$(\lambda^{\mathsf{T}}A)x \le \lfloor \lambda^{\mathsf{T}}b \rfloor$$

is valid for all integral points in P.

Stable Sets

Definitions

- Let G = (V, E) be an undirected graph.
- $S \subseteq V$ is stable if $\{\{u, v\} \in E : u, v \in S\} = \emptyset$.
- Stable sets are the integer solutions to:

$$\begin{aligned} x_u + x_v &\leq 1 \\ x_v &\geq 0 \end{aligned} \qquad \qquad \text{for all } \{u, v\} \in E \\ \text{for all } v \in V \end{aligned}$$

• The stable set polytope is

$$P_{\text{stab}}(G) = \text{conv}\{x \in \{0, 1\}^V : x_u + x_v \le 1 \text{ for all } u, v \in E\}$$

Odd Cycle Inequalities

- An odd cycle C in G consists of an odd number of vertices $0, 1, \ldots, 2k$ and edges $\{i, i+1\}$.
- The odd cycle inequality

$$\sum_{v \in C} x_v \le \frac{|C| - 1}{2}$$

is valid for $P_{\text{stab}}(G)$.

- It has a cutting-plane proof that only needs one step of rounding.
- The separation problem for the class of odd cycle inequalities can be solved in polynomial time:
- Let $y \in \mathbb{Q}^V$.

- We may assume that $y \ge 0$ and $y_u + y_v \le 1$ for all $\{u, v\} \in E$.
- Define, for each edge $e = \{u, v\} \in E, z_e := 1 y_u y_v$.
- So $z_e \ge 0$ for all $e \in E$.
- y satisfies all odd cycle constraints iff z satisfies

$$\sum_{e \in C} z_e \ge 1 \text{ for all odd cycles } C.$$

• If we view z_e as the "length" of edge e, then y satisfies all odd cycle inequalities iff the length of a shortest odd cycle is at least 1.

Shortest Odd Cycles

- A shortest odd cycle can be found in polynomial time:
- Split each node $v \in V$ into two nodes v_1 and v_2 .
- For each arc (u, v) create new arcs (u_1, v_2) and (u_2, v_1) , both of the same length as (u, v).
- Let D' be the digraph constructed this way.
- For each $v \in V$ find the shortest (v_1, v_2) -path in D'.
- The shortest among these paths gives us the shortest odd cycle.

Perfect Matchings

Definitions

- Let G = (V, E) be an undirected graph.
- A matching $M \subseteq E$ is perfect if |M| = |V|/2.
- Perfect matchings are the integer solutions to:

$$\sum_{e \in \delta(v)} x_e = 1 \qquad \text{for all } v \in V$$
$$x_e \ge 0 \qquad \text{for all } e \in E$$

• The perfect matching polytope is

$$P_{\mathrm{PM}}(G) = \operatorname{conv}\left\{x \in \{0, 1\}^E : \sum_{e \in \delta(v)} x_e = 1 \text{ for all } v \in V\right\}$$

Odd Cut Inequalities

• The following inequalities are valid for $P_{\rm PM}(G)$:

$$\sum_{e \in \delta(U)} x_e \ge 1 \text{ for all } U \subset V, |U| \text{ odd}$$

- Each has a cutting-plane proof that requires rounding only once.
- The separation problem for this class of inequalities can be solved in polynomial time.

$\{0,1/2\}$ -cuts

Definition

• Let

$$\mathcal{F}_{1/2}(A,b) := \left\{ (\lambda^{\mathsf{T}} A) x \le |\lambda^{\mathsf{T}} b| : \lambda \in \{0, 1/2\}^m, \lambda^{\mathsf{T}} A \in \mathbb{Z}^n \right\}$$

be the family of all $\{0,1/2\}$ -cuts.

Question: Can one separate efficiently over $\mathcal{F}_{1/2}(A, b)$?

NP-Hardness

Theorem 1. Let $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, and $y \in \mathbb{Q}^n$ with $Ay \leq b$. Checking whether y violates some inequality in $\mathcal{F}_{1/2}(A, b)$ is NP-complete.

Preliminaries

• Let $P = \{x : Ax \le b\}$ and $y \in P$.

y violates a $\{0,1/2\}$ -cut iff there exists $\mu \in \{0,1\}^m$ such that

- $\mu^{\intercal} A \equiv 0 \pmod{2},$
- $-\mu^{\mathsf{T}}b \equiv 1 \pmod{2}$, and
- $-\mu^{\intercal}(b-A\hat{x}) < 1.$

(Because $\mu^{\mathsf{T}}b = 2k + 1$ for some $k \in \mathbb{Z}$, and $\mu^{\mathsf{T}}Ax \leq 2k$ can be written as $\mu^{\mathsf{T}}(b - Ax) \geq 1$.)

An NP-complete Problem

• Given $Q \in \{0,1\}^{r \times t}$, $d \in \{0,1\}^r$, and a positive integer K, decide whether there exists $z \in \{0,1\}^t$ with at most K 1's such that $Qz \equiv d \pmod{2}$.

Reduction

• Let $w := \frac{1}{K+1} \mathbf{1}$ and consider $P = \{x \in \mathbb{R}^n : Ax \le b\}$ with:

$$A := \begin{pmatrix} Q^{\mathsf{T}} \\ d^{\mathsf{T}} \\ \end{bmatrix} 2I_{t+1} \end{pmatrix}, \ b := \begin{pmatrix} 2 \cdot \mathbf{1}^t \\ 1 \\ \end{pmatrix}, \ y := \begin{pmatrix} \mathbf{0}^r \\ \mathbf{1}^t - \frac{1}{2}w^{\mathsf{T}} \\ \frac{1}{2} \\ \end{pmatrix}$$

Proof Sketch

Step 1: Show (A, b, y) is a valid instance.

• $y \in P$: Observe that $b - Ay = (w_1, \dots, w_t, 0)^{\mathsf{T}} \ge 0.$

Proof sketch

Step 2: Equivalence of "Yes"-instances.

• $\exists \mu \in \{0,1\}^m$ with $\mu^{\intercal}A \equiv 0 \pmod{2}$, $\mu^{\intercal}b \equiv 1 \pmod{2}$ iff $\exists z \in \{0,1\}^t$ such that $Qz \equiv d \pmod{2}$:

$$A := \begin{pmatrix} Q^{\mathsf{T}} \\ d^{\mathsf{T}} \end{pmatrix} 2I_{t+1}, \quad b := \begin{pmatrix} 2 \cdot \mathbf{1}^t \\ 1 \end{pmatrix}$$

Proof sketch

Step 2: Equivalence of "Yes"-instances.

• $\exists \mu \text{ s.th. } \mu^{\intercal}(b - Ay) < 1 \text{ iff } \exists z \text{ s.th. } w^{\intercal}z < 1 \ (\Leftrightarrow \mathbf{1}^{\intercal}z \leq K):$

$$\mu^{\mathsf{T}}(b - Ay) = \mu^{\mathsf{T}}(w_1, \dots, w_t, 0)^{\mathsf{T}}$$

Primal Separation

The Primal Separation Problem

- Let P be a 0/1-polytope.
- Given a point $y \in \mathbb{Q}^n$ and a vertex $\hat{x} \in P$, find $c \in \mathbb{Z}^n$ and $d \in \mathbb{Z}$ such that $cx \leq d$ for all $x \in P$, $c\hat{x} = d$, and cy > d, if they exist.

Theorem 2. For 0/1-polytopes, optimization and primal separation are polynomial-time equivalent.

Perfect Matchings

- Let \hat{x} be the incidence vector of a perfect matching M.
- Let $y \in \mathbb{Q}^E_+$ be a point satisfying the node-degree equations.
- We have to find a min-weight odd cut (w.r.t. the edge weights given by y) among those that intersect M in exactly one edge.
- Let $\{s,t\} \in M$ be an arbitrary edge of M.
- Let $G_{\{s,t\}}$ be the graph obtained from G by contracting the end nodes of all edges $e \in M \setminus \{\{s,t\}\}$.
- The minimum weight odd cut among those that contain exactly the edge $\{s, t\}$ of M can be computed by finding a min-weight $\{s, t\}$ -cut in $G_{\{s, t\}}$.

Theorem 3. The primal separation problem for the perfect matching polytope of a graph G = (V, E) can be solved with |V|/2 max-flow computations.

Corollary 4. A minimum weight perfect matching can be computed in polynomial time.

Proof Sketch

Primal Separation

₩

Verification

 \Downarrow

Augmentation

∜

Optimization

The Verification Problem

- Let $P \subseteq \mathbb{R}^n$ be a 0/1-polytope.
- Given an objective function $c \in \mathbb{Z}^n$ and a vertex $\hat{x} \in P$, decide whether \hat{x} minimizes cx over P.

Primal Separation \Rightarrow **Verification**

- Let C be the cone defined by the linear inequalities of P that are tight at \hat{x} .
- By LP duality, \hat{x} minimizes cx over P iff \hat{x} minimizes cx over C.
- By the equivalence of optimization and separation, minimizing cx over C is equivalent to solving the separation problem for C.
- One can solve the separation problem for C by solving the primal separation problem for P and \hat{x} .

The Augmentation Problem

- Let $P \subseteq \mathbb{R}^n$ be a 0/1-polytope.
- Given an objective function $c \in \mathbb{Z}^n$ and a vertex $x \in P$, find a vertex $x' \in P$ such that cx' < cx, if one exists.

$\mathbf{Verification} \Rightarrow \mathbf{Augmentation}$

- We may assume that x = 1.
- Use "Verification" to check whether x is optimal. If not:

```
M := \sum_{i=1}^{n} |c_i| + 1;
for i = 1 to n do
c_i := c_i - M;
call the verification oracle with input x and c;
if x is optimal then
y_i := 0;
c_i := c_i + M
else
y_i := 1
return y.
```

Augmentation \Rightarrow Optimization

- We may assume that $c \ge 0$.
- Let $C := \max\{c_i : i = 1, \dots, n\}$, and $K := \lfloor \log C \rfloor$.
- For k = 0, ..., K, define c^k by $c_i^k := \lfloor c_i/2^{K-k} \rfloor$, i = 1, ..., n.

for $k = 0, 1, \dots, K$ do while x^k is not optimal for c^k do $x^k := \operatorname{AUG}(x^k, c^k)$ $x^{k+1} := x^k$ return x^{K+1} .

Running Time

- $O(\log C)$ many phases.
- At the end of phase k-1, x^k is optimal with respect to c^{k-1} , and hence for $2c^{k-1}$.
- Moreover, $c^k = 2c^{k-1} + c(k)$, for some 0/1-vector c(k).
- If x^{k+1} denotes the optimal solution for c^k at the end of phase k, we obtain

$$c^{k}(x^{k} - x^{k+1}) = 2c^{k-1}(x^{k} - x^{k+1}) + c(k)(x^{k} - x^{k+1}) \le n.$$

• Thus, the algorithm determines an optimal solution by solving at most $O(n \log C)$ augmentation problems.

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.