15.083: Integer Programming and Combinatorial Optimization Problem Set 1 Solutions

Due 9/16/2009

$\max \sum_{k=1}^{20} e_k x_k$		
$\lim_{x} \sum_{i=1}^{s_i x_i}$		
subject to		
$\sum_{i=1}^{5}$		0
$\sum_{i=1}^{x_i} x_i$	2	3
11 11		
$\sum x_i$	\geq	4
$_{16}^{i=4}$		
$\sum x_i$	\geq	4
$\underset{20}{\overset{i=9}{\overset{20}{\overset{20}{}}}}$		
$\sum_{r=1}^{20} r_r$	>	3
$\sum_{i=16}^{\omega_i}$	_	0
$\sum x_i$	\geq	2
$i \in \{4, 8, 15, 20\}$		
$\sum_{n=1}^{20} m_n$	_	19
$\sum_{i=1}^{x_i}$	_	12
20		
$\sum_{i=1}^{n} r_i x_i$	\geq	12r
$\sum a_i x_i$	\geq	12a
i=1 20		
$\sum s_i x_i$	\geq	12s
$\sum_{i=1}^{j}$		
$\sum_{h=x}^{20} h \cdot x$	>	19h
$\sum_{i=1}^{n_i x_i}$	<	1211
$\sum_{i=1}^{20}$		101
$\sum_{i=1}^{n} d_i x_i$	\geq	12d
$\sum_{i=1}^{i=1} r_i$	<	1
$\sum_{i\in\{5,9\}}^{w_i}$	_	Ŧ
$x_2 - x_{19}$	=	0
$\sum x_i$	\leq	3
$i \in \{1, 7, 12, 16\}$		

Problem (1.2) Let $x_i = 1$ if we pick player *i*, 0 otherwise

Problem (1.7)

(a) If the LP below is feasible and its optimal value is greater than zero, then it is possible to separate the points by class.

$\max_{c,z} z$			
subject to)		
$c'x_i$	\leq	1	$\forall i: a_i = 0$
$c'x_i - z$	\geq	1	$\forall i: a_i = 1$

(b) For M sufficiently large and ϵ sufficiently small:

$\max_{c,u_1,u_2,z,\beta_1,\beta_2}\sum_i z$	i		
subject to			
$c'x_i - 1$	\leq	Mu_{2i}	$\forall i$
$1 - c'x_i + \epsilon$	\leq	Mu_{1i}	$\forall i$
$u_{1i} + u_{2i}$	=	1	$\forall i$
$y_i - B'_1 x_i$	\leq	$z_i + M u_{2i}$	$\forall i$
$-y_i + B'_1 x_i$	\leq	$z_i + M u_{2i}$	$\forall i$
$y_i - B'_2 x_i$	\leq	$z_i + M u_{1i}$	$\forall i$
$-y_i + B'_2 x_i$	\leq	$z_i + M u_{1i}$	$\forall i$
$u_{1i}, u_{2i} \in \{0, 1\}$		$\forall i$	

Problem (1.21)

(a) We will show that \mathcal{F} and \mathcal{F}' are both the set of incidence vectors of Directed Hamiltonian Cycles. Let y be the incidence vector of a Directed Hamiltonian Cycle. It is easy to check that $y \in \mathcal{F}$. Now we will derive a vector u such that (u, y) satisfies the constraints for \mathcal{F}' . Starting with node 1, travel along the tour induced by y visiting each node in the graph. For each node i visited, set u_i equal to its position in the tour. For instance, if the Hamiltonian cycle is $1 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 1$, we set $u_4 = 2, u_2 = 3, u_3 = 4$. We then have that the maximum entry of u is n and the minimum entry of u is 2. Therefore for any $i, j|y_{ij} = 0: u_i - u_j + ny_{ij} \le n - 2 < n - 1$. And for any $i, j|y_{ij} = 1: u_j = u_i + 1 \rightarrow u_i - u_j + ny_{ij} = n - 1$. Thus $y \in \mathcal{F}'$. Now let $y \in \{y : \sum_{i \mid (i,j) \in A} y_{ij} = 1, \sum_{j \mid (i,j) \in A} y_{ij} = 1\}$ be the incidence vector of an edge-set that is not a Directed Hamiltonian cycle. By these "conservation of flow" constraints the digraph induced by y must contain a Directed cycle that is not Hamiltonian. Let |C| be the nodes set of nodes visited in this cycle. We $\sum_{(i,j)\in A|i\in C, j\notin C} y_{ij} = 0; \text{ so } y \notin \mathcal{F}. \text{ Now for each edge connecting nodes } i, j \in C \text{ let us sum the } i \in C$ have

constraints
$$u_i - u_j + ny_{ij} \le n - 1$$
. We have $\sum_{(i,j)\in E(S)} u_i - u_j + ny_{ij} = n|C| \le (n-1)|C| = \sum_{(i,j)\in E(S)} n - 1$
which is a contradiction. Thus $u \notin \mathcal{F}'$

which is a contradiction. Thus $y \notin \mathcal{F}'$.

(b) Let $y \in P_{tsp-dcut}$. We wish to show that $\exists u : u_i - u_j + ny_{ij} \leq n-1$. This is true if and only if the following LP is feasible:

 $\max 0$ subject to $\begin{array}{rcl} u_i - u_j &\leq & n - 1 - ny_{ij} \quad \forall (i,j) \in A, i, j \neq 1 \\ \hline \end{array}$ The above LP is feasible if and only if its dual is bounded: $\min_{v} \sum_{(i,j) \in A, i, j \neq 1} (n-1 - ny_{ij}) v_{ij}$ subject to

subject to $\sum_{j} v_{ij} - \sum_{j} v_{ji} = 0 \quad \forall i \in G, i \neq 1$ Let $P = \{v : \sum_{j} v_{ij} - \sum_{j} v_{ji} = 0 \quad \forall i \in G, i \neq 1\}$ be the feasible set of this dual. Thus it is equivalent to show that $\forall v \in P$ we have $\sum_{\substack{(i,j) \in A, i, j \neq 1 \\ \text{Notice that the description of P is comprised of }} (n-1 - ny_{ij})v_{ij} \ge 0$. Since P is a cone, it is

directed conservation of flow constraints. It is not difficult to see that any point $v \in P$ can be written as a conic combination of incidence vectors of directed cycles on the nodes 2, ..., n and thus these cycles are the extreme rays of P.

We then have $y \in P_{tsp-polynomial}$ if for all directed cycles C on 2, ..., $n(n-1)|C| - ny(C) \ge 0$ or, rearranging terms: $y(C) \leq |C| - \frac{|C|}{n}$. But since $y \in P_{tsp-dcut}$ we have

 $\sum_{(i,j)\in A|i\in C, j\notin C} y_{ij} \ge 1 \to y(C) \le |C| - 1 \text{ which is a tighter condition. Therefore } y \in P_{tsp-polynomial}.$

That the inclusion is strict can be seen in the following example of an edge-graph which is in $P_{tsp-polynomial}$ but not $P_{tsp-dcut}$.

(c) Consider the dcut formulation of TSP over a complete graph on 6 nodes. The figure below shows an edge weighting y such that $y \in P_{tsp-dcut}$.

Now suppose that y can be written as a convex combination of K Directed Hamiltonian Cycles: $y = \sum_{k=1}^{K} \lambda_k y^k; \sum_{k=1}^{K} \lambda_k = 1; \lambda_k > 0 \forall k$. All such Cycles must then have $y_{56}^k = 1$ and $y_{21} = 1$. And for at least one such cycle \bar{k} we must have $y_{43}^{\bar{k}} = 1$. However one the complete graph, there are only 2 Directed Hamiltonian Cycles for which $y_{21}^k = y_{56}^k = y_{43}^k = 1$: $1 \to 4 \to 3 \to 5 \to 6 \to 2 \to 1$ and $1 \to 5 \to 6 \to 4 \to 3 \to 2 \to 1$. But $y_{14} = y_{32} = 0$ so y cannot be written as a convex combination of either of these vectors and any other Hamiltonian Cycles. Thus $y \notin conv(\mathcal{F})$.

Problem (1.23)

- (a) AFL yields an optimal objective of 8352 whereas FL yields 13,245. So while AFL's is "better" in that it is lower, FL's provides a better bound on the objective of the integer problem.
- (b) Both formulations have 4,020 variables that are upper and lower bounded. Not including variable bounds, FL has 4,020 constraints and AFL has 220 constraints. Thus AFL has smaller dimension.
- (c) FL has found an integral solution, AFL has not.
- (d) Even though FL takes longer to solve as an LP, the additional constraints provide a much tighter formulation cutting off a large volume of non-integral solutions. Thus in general, it will lead to better bounds on the integral objective and will be "more likely" to find an integral solution than AFL across instances.

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.