
15.083: Integer Programming and Combinatorial Optimization 
Problem Set 2 Solutions 

Due 9/30/2009 

Problem (2.1) We are just checking to see if you demonstrated that you are comfortable with the methods 
that we covered. 

Problem (2.9) 

(a) We will separate into 2 cases: 

C1: n even, n=2k+2: 
We look at the subgraph on nodes {1, ..., n − 1}. This is a complete graph on 2k + 1 nodes, so its 

k−1
 
edge-set may be written as the union of k edge-disjoint Hamiltonian tours: En−1 = HCi. For each 

i=1 
HCi, we construct a n-1 distinct Hamiltonian tours on the complete graph of n nodes through the 
following procedure: for each edge (u, v) ∈ HCi we drop the edge (u, v) and replace it with the edges 
(u, n) and (v, n). This gives us a total of (n − 1) ∗ k = (n − 1) ∗ (n − 2)/2 = n ∗ (n − 1)/2 − n + 1 = d 
tours. Since each HCi was edge disjoint, the incidence matrix of all our d tours contains a block 
diagonal d × d submatrix B in which the diagonal blocks can be rearranged by row and column 
operations to En−1 − In−1 which is non-singular. Thus B is non-singular and our tours are linearly 
independent, thus they are affinely independent. 

C2: n odd, n=2k+1: 
We look at the subgraph on nodes {1, ..., n − 1}. This is a complete graph on 2k nodes, so its edge-set 
may be written as the union of k − 1 edge-disjoint Hamiltonian tours and one perfect matching: 

k−1
 
En−1 = PM ∪ HCi. For each HCi, we construct a n-1 distinct Hamiltonian tours on the complete 

i=1 
graph of n nodes through the same procedure as C1. This gives us 
(n − 1) ∗ (k − 1) = (n − 1) ∗ (n − 2)/2 = n ∗ (n − 1)/2 − n + 1 − (n − 1) = d − (n − 1) linearly 
independent tours. We then order the edges on PM arbitrarily {(u1, v1), (u2, v2), ..., (uk, vk)} and add �k−1the edges {(vk, u1)} ∪ i=1 {(vi, ui+1)} to obtain another tour HCk on n-1 nodes. We create n − 1 
tours on n nodes from HCk in the same manner as before. Now if we look at the incidence matrix of all 
our d tours, this matrix contains a a block triangular d × d submatrix B with k − 1 blocks equivalent to 
En−1 − In−1 and an additional block Ek − Ik. 

(b) We will separate this problem into 3 cases: 

C1:	 n = 4, 5: these cases can easily be checked graphically (if you omitted them for your proof not realizing 
that they are not covered by cases 2 and 3, you will still receive full credit). 

C2:	 n ≥ 6, 3 ≤ |S| ≤ n/2: 
Suppose S = {1, 2, ..., k}. We will apply theorem A.2 in the book. We write the subtour elimination 
inequality as fx ≤ g and let F = {x ∈ conv(F) : fx = g}, (A=, b=) the equality set of conv(F). Let 
hx = d be any equality that holds for x ∈ F To prove that F is a facet using this theorem, we need to 
find multipliers (α, u) such that h = αf + uA= [note that this implies d = αg + ub]. The first step in 
applying this theorem is to find certain components of h that we can fix the value of without loss of 
generality. To do this, we will select a set of columns of A= that is non-singular. If we take the edge set 

n
 
E� = {2, 3} ∪ {1, i} and look at the columns of A= corresponding to the edges in E�, we have such a 

i=1
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non-singular matrix. Thus there exists a multiplier ū such that h ¯ = h + ūA= where h̄ 
e = fe ∀e ∈ E�. 

Therefore, without loss of generality, we may restrict our attention to equalities hx = d where: 

h1i = f1i = 1 i = 2, ..., k 

h1i = f1i = 0 i = k + 1, ..., n 

h23 = f23 = 1 

Now, if we pick any 2 tours x1, x2 in F, we must have that hx1 = hx2 . We will use this property to

derive the other components of h:

For any i ∈ {4, ..., k} consider the tours:


x 1 = (1, i, i − 1, ..., 4, 2, 3, i + 1, ...n) 
x 2 = (1, 2, 4, ..., i − 1, i, 3, i + 1, ...n) 

We have 0 = hx1 − hx2 = h1i + h23 − h12 − h3i = 1 − h3i ⇒ h3i = 1. By iterating this argument we can

obtain that hij = 1 = fij ∀(i, j) ∈ E(S).

Next, for any i ∈ {k + 1, ..., n} consider the tours:


x 1 = (1, 2, ..., i − 1, i + 1, ..., n, i) 
x 2 = (2, 1, ..., i − 1, i + 1, ..., n, i) 

We have 0 = hx1 − hx2 = h13 + h1i − h23 − h2i = h2i ⇒ h2i = 0. By iterating this argument we can

obtain that hij = 0 = fij ∀(i, j) ∈ δ(S).

Finally, for any i < j : i, j �∈ S, consider the tours:


x 1 = (1, 2, ..., i − 1, i + 1, ..., j − 1, j + 1, ..., n, i, j) 
x 2 = (1, 2, ..., i − 1, i + 1, ..., j − 1, j + 1, ..., n, j, i) 

We have 0 = hx1 − hx2 = hin + h1j − hjn − h1i = hin − hjn ⇒ hin = hjn. By iterating this argument

we can obtain that there exists some number γ:hij = γ ∀(i, j) ∈ E(V \S).

Together this implies that hx = x(E(S)) + γx(E(V \S)). Thus by picking α = 1 + γ, ui = −γ/2 for

i = 1, ..., k and ui = γ/2 for i = k + 1, ..., n we obtain h = αf + uA= .


C3:	 n ≥ 6, S = 2: 
Suppose 

| |
|S| = {n − 1, n}. Then our subtour elimination constraint is equivalent to xn−1,n ≤ 1. We will 

use a similar construction to our proof of part (a), ensuring that the edge (n − 1, n) is included in each 
tour we construct. We again consider odd and even cases: 

(i)	 n = 2k + 1: 
To ensure that (n − 1, n) is included in everything we construct, we begin with the subgraph on 

k−1
 
the nodes {1, ..., n − 2}. The edgeset of this complete graph can be written as En−2 = HCi. 

i=1 
For HC1 = (u1, u2, ..., un−2), we construct 2(n-3) tours on n nodes by dropping each edge 
(uj , uj+1) ∈ HC1 and replacing it with the edges {(uj , n − 1), (uj+1, n), (n − 1, n)} and 
{(uj+1, n − 1), (uj , n), (n − 1, n)} respectively to create 2 distinct tours containing (n − 1, n). We 
create one additional tour from HC1 by dropping (un−2, u1) and adding 
{(un−2, n), (u1, nn−1), (n − 1, n)}. For HCi i = 2, ..., k − 1, we construct n − 2 tours on n nodes by 
replacing each edge (u, v) ∈ HCi [labeled in such a way that when we look at HC1 u = uj1 , v = uj2 

with j1 < j2] by the edges {(u, n − 1), (v, n), (n − 1, n)}. This gives us a total of 
2(n − 3)+1+ (k − 2) ∗ (n − 2) = n ∗ (n − 1)/2+ n tours. Let B be the incidence matrix of the tours 
we created. We can use a similar approach to part (a) to prove that the rows of B are linearly 
independent, but here we will show you an alternative way based on linear programming duality. 
Now suppose that the rows of B are not linearly independent. Then ∃λ = 0 : � i Biλi = 0; for 
such a λ we have λτ = 0 for some arbitrary tour � τ . Then the following LP is unbounded for any 
choice of α = 0: 
max αλτ 

subject to 
λ�B = 0 

The above LP is unbounded if and only if its dual is infeasible: 
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min 0 
subject to 
By = αeτ 

We will find a feasible solution y to this dual proving linear independence. Let HCi be the n-2 
cycle used to construct τ and let (u, v) be the edge dropped. We set 

1 n−4 y(w1,w2) = n−3 ∀(w1, w2) ∈ HCi\{(u, v)} and y(u,v) = − n−3 . If i > 1 or i = 1 and 
(u, v) = (un−2, u1), we only created one tour by dropping (u, v); thus setting ye = 0 for all other 
edges is sufficient for a feasible solution with α = 1. If i = 1 and (u, v) = (uj , uj+1) then we 
created 2 tours from dropping (u, v) from HC1 by adding {(uj , n − 1), (uj+1, n), (n − 1, n)} and 
{(uj+1, n − 1), (uj , n), (n − 1, n)} respectively. If {(uj , n − 1), (uj+1, n), (n − 1, n)} was added to 
make τ we set y(w,n−1) 

n−4 , p > j and y(w,n) 
n−4 , p < j + 1 and = − n−3 ∀w = up = − n−3 ∀w = up

yn−1,n = n−4 and for all remaining edges ye = 0, we then have a feasible solution for α = 1 + n−4 . n−3 n−3 
Similarly, if {(uj+1, n − 1), (uj , n), (n − 1, n)} was added to make τ we set 

n−4 n−4 y(w,n−1) = − n−3 ∀w = up, p ≥ j, p =� j + 1 and y(w,n) = − n−3 ∀w = up, p ≤ j + 1, p =� j and 
yn−1,n = n−4 , we then have a feasible solution for α = 1 + n−4 . n−3 n−3 

(ii) n = 2k + 2: 
k−1
 

If we look at the subgraph on {1, ..., n − 2}, we have En−2 = PM ∪ HCi. For each HCi, we 
i=1 

obtain the tours the same way as in (i), plus we obtain an additional 1 (n − 2) tours by ordering 2 
the edges in PM arbitrarily and adding missing edges to create a new tour on {1, ..., n − 2}. We 
then replace each edge in PM as we did for HCi i > 1. Using the same methodology as (i), we 
can show that these tours are affinely independent. If the tour τ for which λτ = 0 is constructed 
from PM by removing (u, v), we set y(u,v) 

k−2 and ye = 1 ∀e ∈ PM\{(
�
u, v)}.= − k−1 k−1 

Problem (2.15) Just as in the case of the comb inequality proof in the book, it is easier to examine the clique 
tree inequalities through the edge-set representation rather than the boundary representation. For a clique tree 
CT , to obtain the edgeset representation we note that since e∈E(Hi) xe + 2

1 
e∈δ(Hi) xe = Hi and 

e∈E(Ti) xe + 2
1 

e∈δ(Ti) xe = |Ti| the boundary representation is equivalent to: 

h t

xe + xe ≥ 3t + 2h − 1 
i=1 e∈δ(Hi) i=1 e∈δ(Ti) 

⇔
h t h t� � � � � � 2h + 2t − 2 t + 1 

xe + xe ≤ |Hi| + |Ti| − 
2 

− 
2 

i=1 e∈E(Hi) i=1 e∈E(Ti) i=1 i=1 

h t� � t + 1 
= |Hi| + (|Ti| − ti) − 

2 
i=1 i=1 

Where ti is this number of handles that intersect Ti [note that ti = h + t − 1 since we have an underlying i 
tree structure]. We define the quantities 

h t

lhs(CT ) = xe + xe 

i=1 e∈E(Hi) i=1 e∈E(Ti) 

h t� � t + 1 
rhs(CT ) = |Hi| + (|Ti| − ti) − 

2 
i=1 i=1 

We will prove that the clique tree inequalities are valid by induction on the number of handles. For 1 handle,

this reduces to the comb inequality which is proved valid in the book.

Suppose that the clique tree inequalities are valid for trees with h − 1 handles and let CT be a clique tree with h

handles. W.l.o.g. let T1, ..., Tp be the teeth intersecting Hh. We now consider two collections of clique trees:


p
 
(i) CT \Hh = {CTi

�}
i=1
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(ii) (CT \Hh) (Ti ∩ Hh) = {CTi}

i=1 i=1

Note that each CTi and CTi
� has at most h − 1 handles. We have by construction: 

p� p + 1 
rhs(CTi) = rhs(CT ) − |Hh| + 2 

i=1 
p p

rhs(CTi
�) = (rhs(CTi) − |Hh ∩ Ti|) 

i=1 i=1 

Therefore, examining the original clique tree CT, by the induction hypothesis we have: ⎛ ⎞ 
p

2lhs(CT ) ≤ ⎝lhs(CTi) + lhs(CTi
�) + xe ⎠ + xe 

i=1 e∈E(Hh∩Ti) v∈Hh e∈δ(v) 

p

≤ (rhs(CTi) + rhs(CTi
�) + |Hh ∩ Ti| − 1) + 2|H|

i=1 
p

= 2 (rhs(CTi)) + 2|H| − p 
i=1 

= 2rhs(CT ) + 1 

⇒ 

lhs(CT ) ≤ rhs(CT ) + 1 
2 

⇒
rounding 

lhs(CT ) ≤ rhs(CT ) 

Problem (2.20) For this question, we are checking that you are comfortable with AMPL output and 
CPLEX/AMPL interaction. You should be able to explain that gap tolerance measures the distance between 
the objective function value of the best found integer solution and the objective value of the best bound (linear 
relaxation or dual). In CPLEX, there are 3 relevant values relating to this gap; absmipgap is the absolute value 
of this difference, relmipgap is absmipgap/objective function value of best integer solution, and mipgap is is the 
gap tolerance which tells CPLEX to stop when 
abs((best bound) − (best integer)) < mipgap ∗ (1 + abs(best bound)). The default mipgap tolerence is 10−4 . 
The 1-knapsack instances should solve within a few seconds. You should be able to set the timelimit parameter 
to 120 seconds for the N-knapsack problem. You can use a combination of mipdisplay=1 and mipdisplay=5 to 
count improving integral solutions and the number of nodes remaining. 
With cover cuts disabled 2-knapsack should take much longer than 1-knapsack and 4-knapsack should timeout 
after finding 1 integer solution (since you are using random data, it is possible to find a number different than 1, 
but is unlikely). After cover cuts are enabled, CPLEX should prove optimality of the second integer solution it 
finds quickly. 

Problem (Longest Path) Hamiltonian Circuit is a restriction of Hamiltonian path with K = |V |. 

Problem (EXACT COVER BY 4-SETS) This problem is in NP since C � provides a certificate for a YES 
instance that can be checked in polynomial time. We use local replacement to transform 3DM to EXACT 
COVER BY 4-SETS. Given an instance of 3DM, w.l.o.g. assume (X ∪ Y ∪ X) ∩ {j ∈ N : 1 ≤ j ≤ q} = ∅. We 
create the set X ¯ = W ∪ Y ∪ X ∪ {j ∈ N : 1 ≤ j ≤ q}. Let mi = (wi, xi, yi) be the ith element of M with 

q m
 
 
|M | = m. We define C = 

j=1 i=1 

{{mi, xi, yi, j}}. Note that |X̄ | = 4q and C is a collection of 4-sets. 

Suppose our 3DM matching is a YES instance and let M � be a matching. Then each element in M �, call it 
mi = (wi, xi, yi) has exactly one distinct coordinate of W, X and Y. So if we take C � = {{wi, xi, yi, i}} we have 
an exact cover and thus a YES instance of EXACT COVER BY 4-SETS. 
Suppose we have a YES instance of EXACT COVER BY 4-SETS and let C � be an exact cover. The we have 
|C �| = q and each element of C �, C � = {wi, xi, yi, ji}, contains exactly one distinct member of i 
{j ∈ N : 1 ≤ j ≤ q}. Thus each element of C � must contain exactly one element from each of W, Y and X by 
construction. Therefore if we take M � = {(wi, xi, yi)|i = 1, .., q} we have a matching and a YES instance of 3DM. 
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