Problem Set 5

Due Wednesday, November 18, 2009; 4pm

Problem 1 (Monomial orderings).
(a) Show that an order relation \succ on \mathbb{Z}_{+}^{n} is a monomial ordering if and only if
(i) \succ is a total ordering on \mathbb{Z}_{+}^{n},
(ii) $\alpha \succ \beta$ and $\gamma \in \mathbb{Z}_{+}^{n}$ imply $\alpha+\gamma \succ \beta+\gamma$, and
(iii) every strictly decreasing sequence in $\mathbb{Z}_{+}^{n}, \alpha(1) \succ \alpha(2) \succ \alpha(3) \succ \cdots$, eventually terminates.
(b) Prove that the lex ordering is a monomial ordering.
(c) Use Dickson's Lemma to prove that an order relation \succ on \mathbb{Z}_{+}^{n} that satisfies (i) and (ii) is a monomial ordering if and only if $\alpha \succeq 0$ for all $\alpha \in \mathbb{Z}_{+}^{n}$.
(d) Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ be nonzero polynomials. Show that multideg $(f g)=\operatorname{multideg}(f)+$ $\operatorname{multideg}(g)$. Also show that, if $f+g \neq 0$, then multideg $(f+g) \leq \max (\operatorname{multideg}(f)$, multideg $(g))$.

Problem 2 (Monomial ideals). If $I=\left\langle x^{\alpha(1)}, \ldots, x^{\alpha(s)}\right\rangle$ is a monomial ideal, prove that a polynomial f is in I if and only if the remainder of f on division by $x^{\alpha(1)}, \ldots, x^{\alpha(s)}$ is zero.

Problem 3 (Gröbner bases).
(a) Let G be a minimal Gröbner basis for a polynomial ideal $I \neq\{0\}$. We say that $g \in G$ is reduced for G if no monomial of g is in $\langle\operatorname{LT}(G \backslash\{g\})\rangle$. For $g \in G$, let g^{\prime} be the remainder of g on division by $G \backslash\{g\}$. Set $G^{\prime}:=(G \backslash\{g\}) \cup\left\{g^{\prime}\right\}$.
(i) Prove that G^{\prime} is a minimal Gröbner basis for I.
(ii) Show that g^{\prime} is reduced for G^{\prime}.
(iii) Use (i) and (ii) to suggest an algorithm for computing a reduced Gröbner basis.
(b) Consider the ideal $I=\langle 3 x-6 y-2 z, 2 x-4 y+4 w, x-2 y-z-w\rangle$. Compute the reduced Gröbner basis with respect to lex order with $x>y>z>w$, and use it to solve the corresponding system of linear equations.

Problem 4 (Gröbner basis algorithm for 0/1-integer programming). Solve the problem

$$
\begin{array}{r}
\min \quad 3 x_{1}-2 x_{2}-4 x_{3}+7 x_{4}+x_{5}+2 x_{6} \\
\text { subject to } \quad 8 x_{1}+4 x_{2}-3 x_{3}-5 x_{4}+2 x_{5}-x_{6}=7 \\
x_{1}, \ldots, x_{6} \in\{0,1\}
\end{array}
$$

by using the algorithm described on Page 263 of the textbook. (You may use computer algebra software to compute Gröbner bases, if you want to.)

Problem 5 (Total dual integrality).
(a) Consider the linear system

$$
\begin{array}{r}
x_{1}+2 x_{2} \leq 6, \\
2 x_{1}+x_{2} \leq 6, \\
x_{1}, x_{2} \geq 0 .
\end{array}
$$

Show that it is not totally dual integral (TDI), yet it defines an integer polytope P. Find a representation $A x \leq b$ of P, with A and b integral, such that $A x \leq b$ is TDI.
(b) Let $A x \leq b$ be a rational system of linear inequalities. Show that there exists a positive integer t such that $\frac{1}{t} A x \leq \frac{1}{t} b$ is totally dual integral.
(c) Let $G=(V, E)$ be a $2 k$-connected undirected graph. ${ }^{1}$ Orient the edges of G arbitrarily, yielding the directed graph $D=(V, A)$. Consider the following linear system:

$$
\begin{equation*}
\sum_{a \in \delta^{-}(U)} x_{a}-\sum_{a \in \delta^{+}(U)} x_{a} \leq\left|\delta^{-}(U)\right|-k \text { for } \emptyset \subset U \subset V, \quad 0 \leq x_{a} \leq 1 \text { for } a \in A . \tag{1}
\end{equation*}
$$

Here $\delta^{-}(U)\left(\delta^{+}(U)\right)$ denotes the set of arcs of D entering (leaving) U.
(i) Show that if (1) has an integral solution x, then G can be oriented so as to become a k-connected digraph. ${ }^{2}$ (Hint: Reverse the orientation on the arcs of D with $x_{a}=1$.)

So it suffices to show that (1) has an integral solution to prove the following theorem:
A $2 k$-connected undirected graph can be oriented so as to become a k-connected directed graph.
(ii) Show that (1) has a feasible (fractional) solution.
(iii) Show that (1) is TDI. (You may use the following fact: Let $D=(V, A)$ be a digraph, and let $\mathcal{F} \subseteq 2^{V}$ be a family of subsets of V with the following property: if $T, U \in \mathcal{F}$, then $T \subseteq U$ or $U \subseteq T$ or $T \cap U=\emptyset$ or $T \cup U=V$. Then the matrix M with entries $M_{U, a}=+1$ if a enters $U, M_{U, a}=-1$ if a leaves U, and $M_{U, a}=0$ otherwise, for $U \in \mathcal{F}, a \in A$, is totally unimodular.)

[^0]MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ An undirected graph is $2 k$-connected if each nonempty proper subset of vertices is entered by at least $2 k$ edges.
 ${ }^{2} \mathrm{~A}$ directed graph is k-connected if each nonempty proper subset of the vertices is entered by at least k arcs.

