Lecture 15: Algebraic Geometry II

Today...

- Ideals in $k[x]$
- Properties of Gröbner bases
- Buchberger's algorithm
- Elimination theory
- The Weak Nullstellensatz
- 0/1-Integer Programming

The Structure of Ideals in $k[x]$

Theorem 1. If k is a field, then every ideal of $k[x]$ is of the form $\langle f\rangle$ for some $f \in k[x]$. Moreover, f is unique up to multiplication by a nonzero constant in k.

Proof:

- If $I=\{0\}$, then $I=\langle 0\rangle$. So assume $I \neq\{0\}$.
- Let f be a nonzero polynomial of minimum degree in I. Claim: $\langle f\rangle=I$.
- Clearly, $\langle f\rangle \subseteq I$. Let $g \in I$ be arbitrary.
- The division algorithm yields $g=q f+r$, where either $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(f)$.
- I is an ideal, so $q f \in I$, and, thus, $r=g-q f \in I$.
- By the choice of $f, r=0$.
- But then $g=q f \in\langle f\rangle$.

Reminder: Gröbner Bases

- Fix a monomial order. A subset $\left\{g_{1}, \ldots, g_{s}\right\}$ of an ideal I is a Gröbner basis of I if

$$
\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle=\langle\operatorname{LT}(I)\rangle .
$$

- Equivalently, $\left\{g_{1}, \ldots, g_{s}\right\} \subseteq I$ is a Gröbner basis of I iff the leading term of any element in I is divisible by one of the $\operatorname{LT}\left(g_{i}\right)$.

Properties of Gröbner Bases I

Theorem 2. Let $G=\left\{g_{1}, \ldots, g_{s}\right\}$ be a Gröbner basis for an ideal I, and let $f \in k\left[x_{1}, \ldots, x_{n}\right]$. Then the remainder r on division of f by G is unique, no matter how the elements of G are listed when using the division algorithm.

Proof:

- First, recall the following result: Let $I=\left\langle x^{\alpha}: \alpha \in A\right\rangle$ be a monomial ideal. Then a monomial x^{β} lies in I iff x^{β} is divisible by x^{α} for some $\alpha \in A$.
- Suppose $f=a_{1} g_{1}+\cdots+a_{s} g_{s}+r=a_{1}^{\prime} g_{1}+\cdots+a_{s}^{\prime} g_{s}+r^{\prime}$ with $r \neq r^{\prime}$.
- Then $r-r^{\prime} \in I$ and, thus, $\operatorname{LT}\left(r-r^{\prime}\right) \in\langle\operatorname{LT}(I)\rangle=\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle$.
- The lemma implies that $\mathrm{LT}\left(r-r^{\prime}\right)$ is divisible by one of $\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)$.
- This is impossible since no term of r, r^{\prime} is divisible by one of $\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)$.

S-Polynomials

- Let $I=\left\langle f_{1}, \ldots, f_{t}\right\rangle$.
- We show that, in general, $\langle\mathrm{LT}(I)\rangle$ can be strictly larger than $\left\langle\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{t}\right)\right\rangle$.
- Consider $I=\left\langle f_{1}, f_{2}\right\rangle$, where $f_{1}=x^{3}-2 x y$ and $f_{2}=x^{2} y-2 y^{2}+x$ with grlex order.
- Note that

$$
x \cdot\left(x^{2} y-2 y^{2}+x\right)-y \cdot\left(x^{3}-2 x y\right)=x^{2},
$$

so $x^{2} \in I$. Thus $x^{2}=\operatorname{LT}\left(x^{2}\right) \in\langle\operatorname{LT}(I)\rangle$.

- However, x^{2} is not divisible by $\operatorname{LT}\left(f_{1}\right)=x^{3}$ or $\operatorname{LT}\left(f_{2}\right)=x^{2} y$, so that $x^{2} \notin\left\langle\operatorname{LT}\left(f_{1}\right), \operatorname{LT}\left(f_{2}\right)\right\rangle$.
- What happened?
- The leading terms in a suitable combination

$$
a x^{\alpha} f_{i}-b x^{\beta} f_{j}
$$

may cancel, leaving only smaller terms.

- On the other hand, $a x^{\alpha} f_{i}-b x^{\beta} f_{j} \in I$, so its leading term is in $\langle\operatorname{LT}(I)\rangle$.
- This is an "obstruction" to $\left\{f_{1}, \ldots, f_{t}\right\}$ being a Gröbner basis.
- Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ be nonzero polynomials with $\operatorname{multideg}(f)=\alpha$ and $\operatorname{multideg}(g)=\beta$.
- Let $\gamma_{i}=\max \left(\alpha_{i}, \beta_{i}\right)$. We call x^{γ} the least common multiple of $\operatorname{LM}(f)$ and $\operatorname{LM}(g)$.
- The S-polynomial of f and g is defined as

$$
S(f, g)=\frac{x^{\gamma}}{\operatorname{LT}(f)} \cdot f-\frac{x^{\gamma}}{\operatorname{LT}(g)} \cdot g .
$$

- An S-polynomial is designed to produce cancellation of leading terms.

Example:

- Let $f=x^{3} y^{2}-x^{2} y^{3}+x$ and $g=3 x^{4} y+y^{2}$ with the grlex order.
- Then $\gamma=(4,2)$.
- Moreover,

$$
\begin{aligned}
S(f, g) & =\frac{x^{4} y^{2}}{x^{3} y^{2}} \cdot f-\frac{x^{4} y^{2}}{3 x^{4} y} \cdot g \\
& =x \cdot f-\frac{1}{3} y \cdot g \\
& =-x^{3} y^{3}+x^{2}-\frac{1}{3} y^{3}
\end{aligned}
$$

- Consider $\sum_{i=1}^{t} c_{i} f_{i}$, where $c_{i} \in k$ and $\operatorname{multideg}\left(f_{i}\right)=\delta \in \mathbb{Z}_{+}^{n}$ for all i.
- If multideg $\left(\sum_{i=1}^{t} c_{i} f_{i}\right)<\delta$, then $\sum_{i=1}^{t} c_{i} f_{i}$ is a linear combination, with coefficients in k, of the S-polynomials $S\left(f_{j}, f_{k}\right)$ for $1 \leq j, k \leq t$.
- Moreover, each $S\left(f_{j}, f_{k}\right)$ has multidegree $<\delta$.

$$
\sum_{i=1}^{t} c_{i} f_{i}=\sum_{j, k} c_{j k} S\left(f_{j}, f_{k}\right)
$$

Properties of Gröbner Bases II

Theorem 3. A basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ for an ideal I is a Gröbner basis iff for all pairs $i \neq j$, the remainder on division of $S\left(g_{i}, g_{j}\right)$ by G is zero.

Sketch of proof:

- Let $f \in I$ be a nonzero polynomial. There are polynomials h_{i} such that $f=\sum_{i=1}^{s} h_{i} g_{i}$.
- It follows that multideg $(f) \leq \max \left(\operatorname{multideg}\left(h_{i} g_{i}\right)\right)$.
- If " $<$ ", then some cancellation of leading terms must occur.
- These can be rewritten as S-polynomials.
- The assumption allows us to replace S-polynomials by expressions that involve less cancellation.
- We eventually find an expression for f such that multideg $(f)=\operatorname{multideg}\left(h_{i} g_{i}\right)$ for some i.
- It follows that $\operatorname{LT}(f)$ is divisible by $\operatorname{LT}\left(g_{i}\right)$.
- This shows that $\operatorname{LT}(f) \in\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle$.

Buchberger's Algorithm

- Consider $I=\left\langle f_{1}, f_{2}\right\rangle$, where $f_{1}=x^{3}-2 x y$ and $f_{2}=x^{2} y-2 y^{2}+x$ with grlex order. Let $F=\left(f_{1}, f_{2}\right)$.
- $S\left(f_{1}, f_{2}\right)=-x^{2}$; its remainder on division by F is $-x^{2}$.
- Add $f_{3}=-x^{2}$ to the generating set F.
- $S\left(f_{1}, f_{3}\right)=-2 x y$; its remainder on division by F is $-2 x y$.
- Add $f_{4}=-2 x y$ to the generating set F.
- $S\left(f_{1}, f_{4}\right)=-2 x y^{2}$; its remainder on division by F is 0 .
- $S\left(f_{2}, f_{3}\right)=-2 y^{2}+x$; its remainder is $-2 y^{2}+x$.
- Add $f_{5}=-2 y^{2}+x$ to the generating set F.
- The resulting set F satisfies the "S-pair criterion," so it is a Gröbner basis.

Buchberger's Algorithm

The algorithm:
In: $F=\left(f_{1}, \ldots, f_{t}\right)$
$\left\{\right.$ defining $\left.I=\left\langle f_{1}, \ldots, f_{t}\right\rangle\right\}$
Out: Gröbner basis $G=\left(g_{1}, \ldots, g_{s}\right)$ for I, with $F \subseteq G$

1. $G:=F$
2. REPEAT
3. $G^{\prime}:=G$
4. FOR each pair $p \neq q$ in $G^{\prime} \mathrm{DO}$
5. $\quad S:=$ remainder of $S(p, q)$ on division by G^{\prime}
6. IF $S \neq 0$ THEN $G:=G \cup\{S\}$
7. UNTIL $G=G^{\prime}$

Buchberger's Algorithm

Proof of correctness:

- The algorithm terminates when $G=G^{\prime}$, which means that G satisfies the S-pair criterion.

Proof of finiteness:

- The ideals $\left\langle\mathrm{LT}\left(G^{\prime}\right)\right\rangle$ from successive iterations form an ascending chain.
- Let us call this chain $J_{1} \subset J_{2} \subset J_{3} \subset \cdots$.
- Their union $J=\cup_{i=1}^{\infty} J_{i}$ is an ideal as well. By Hilbert's Basis Theorem, it is finitely generated: $J=\left\langle h_{1}, \ldots, h_{r}\right\rangle$.
- Each of the h_{ℓ} is contained in one of the J_{i}. Let N be the maximum such index i.
- Then $J=\left\langle h_{1}, \ldots, h_{r}\right\rangle \subseteq J_{N} \subset J_{N+1} \subset \cdots \subset J$.
- So the chain stabilizes with J_{N}, and the algorithm terminates after a finite number of steps.

Minimal Gröbner Basis

- Let G be a Gröbner basis for I, and let $p \in G$ be such that $\operatorname{LT}(p) \in\langle\operatorname{LT}(G \backslash\{p\})\rangle$. Then $G \backslash\{p\}$ is also a Gröbner basis for I.
- A minimal Gröbner basis for an ideal I is a Gröbner basis G for I such that

1. $\mathrm{LC}(p)=1$ for all $p \in G$.
2. For all $p \in G, \operatorname{LT}(p) \notin\langle\operatorname{LT}(G \backslash\{p\})\rangle$.

- A given ideal may have many minimal Gröbner bases. But we can single one out that is "better" than the others:
- A reduced Gröbner basis for an ideal I is a Gröbner basis G for I such that

1. $\mathrm{LC}(p)=1$ for all $p \in G$.
2. For all $p \in G$, no monomial of p lies in $\langle\operatorname{LT}(G \backslash\{p\})\rangle$.

Reduced Gröbner Basis

Lemma 4. Let $I \neq\{0\}$ be an ideal. Then, for a given monomial ordering, I has a unique reduced Gröbner basis.
(One can obtain a reduced Gröbner basis from a minimal one by replacing $g \in G$ by the remainder of g on division by $G \backslash\{g\}$, and repeating.)

Elimination Theory

- Systematic methods for eliminating variables from systems of polynomial equations.
- For example, consider

$$
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}+15 x_{6}-15=0, x_{1}^{2}-x_{1}=0, \ldots, x_{6}^{2}-x_{6}=0 .
$$

- The reduced Gröbner basis with respect to lex order is $G=\left\{x_{6}^{2}-x_{6}, x_{5}+x_{6}-1, x_{4}+x_{6}-\right.$ $\left.1, x_{3}+x_{6}-1, x_{2}+x_{6}-1, x_{1}+x_{6}-1\right\}$.
- So the original system has exactly two solutions: $\bar{x}=(1,1,1,1,1,0)$ or $\bar{x}=(0,0,0,0,0,1)$
- Given $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq k\left[x_{1}, \ldots, x_{n}\right]$, the ℓ-th elimination ideal I_{ℓ} is the ideal of $k\left[x_{\ell+1}, \ldots, x_{n}\right]$ defined by

$$
I_{\ell}=I \cap k\left[x_{\ell+1}, \ldots, x_{n}\right] .
$$

- I_{ℓ} consists of all consequences of $f_{1}=f_{2}=\cdots=f_{s}=0$ which eliminate the variables x_{1}, \ldots, x_{ℓ}.
- Eliminating x_{1}, \ldots, x_{ℓ} means finding nonzero polynomials in I_{ℓ}.

Theorem 5. Let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and let G be a Gröbner basis of I with respect to lex order where $x_{1}>x_{2}>\cdots>x_{n}$. Then, for every $0 \leq \ell \leq n-1$, the set

$$
G_{\ell}=G \cap k\left[x_{\ell+1}, \ldots, x_{n}\right]
$$

is a Gröbner basis of the ℓ-th elimination ideal I_{ℓ}.
Proof:

- It suffices to show that $\left\langle\mathrm{LT}\left(I_{\ell}\right)\right\rangle \subseteq\left\langle\mathrm{LT}\left(G_{\ell}\right)\right\rangle$.
- We show that $\operatorname{LT}(f)$, for $f \in I_{\ell}$ arbitrary, is divisible by $\operatorname{LT}(g)$ for some $g \in G_{\ell}$.
- Note that $\operatorname{LT}(f)$ is divisible by $\operatorname{LT}(g)$ for some $g \in G$.
- Since $f \in I_{\ell}$, this means that $\operatorname{LT}(g)$ involves only $x_{\ell+1}, \ldots, x_{n}$.
- Any monomial involving x_{1}, \ldots, x_{ℓ} is greater than all monomials in $k\left[x_{\ell+1}, \ldots, x_{n}\right]$.
- Hence, $\operatorname{LT}(g) \in k\left[x_{\ell+1}, \ldots, x_{n}\right]$ implies $g \in k\left[x_{\ell+1}, \ldots, x_{n}\right]$.
- Therefore, $g \in G_{\ell}$.

The Weak Nullstellensatz

- Recall that a variety $V \subseteq k^{n}$ can be studied via the ideal

$$
I(V)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(x)=0 \text { for all } x \in V\right\} .
$$

- This gives a map $V \longrightarrow I(V)$.
- On the other hand, given an ideal I,

$$
V(I)=\left\{x \in k^{n}: f(x)=0 \text { for all } f \in I\right\} .
$$

is an affine variety, by Hilbert's Basis Theorem.

- This gives a map $I \longrightarrow V(I)$.
- Note that the map " V " is not one-to-one: for example, $V(x)=V\left(x^{2}\right)=\{0\}$.
- Recall that k is algebraically closed if every nonconstant polynomial in $k[x]$ has a root in k.
- Also recall that \mathbb{C} is algebraically closed (Fundamental Theorem of Algebra).
- Consider $1,1+x^{2}$, and $1+x^{2}+x^{4}$ in $\mathbb{R}[x]$. They generate different ideals:

$$
I_{1}=\langle 1\rangle=\mathbb{R}[x], \quad I_{2}=\left\langle 1+x^{2}\right\rangle, \quad I_{3}=\left\langle 1+x^{2}+x^{4}\right\rangle .
$$

However, $V\left(I_{1}\right)=V\left(I_{2}\right)=V\left(I_{3}\right)=\emptyset$.

- This problem goes away in the one-variable case if k is algebraically closed:
- Let I be an ideal in $k[x]$, where k is algebraically closed.
- Then $I=\langle f\rangle$, and $V(I)$ are the roots of f.
- Since every nonconstant polynomial has a root, $V(I)=\emptyset$ implies that f is a nonzero constant.
- Hence, $1 / f \in k$. Thus, $1=(1 / f) \cdot f \in I$.
- Consequently, $g \cdot 1=g \in I$ for all $g \in k[x]$.
- It follows that $I=k[x]$ is the only ideal of $k[x]$ that represents the empty variety when k is algebraically closed.
- The same holds when there is more than one variable!

Theorem 6. Let k be an algebraically closed field, and let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal satisfying $V(I)=\emptyset$. Then $I=k\left[x_{1}, \ldots, x_{n}\right]$.
(Can be thought of as the "Fundamental Theorem of Algebra for Multivariate Polynomials:" every system of polynomials that generates an ideal smaller than $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ has a common zero in \mathbb{C}^{n}.)

- The system

$$
f_{1}=0, f_{2}=0, \ldots, f_{s}=0
$$

does not have a common solution in \mathbb{C}^{n} iff $V\left(f_{1}, \ldots, f_{s}\right)=\emptyset$.

- By the Weak Nullstellensatz, this happens iff $1 \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Regardless of the monomial ordering, $\{1\}$ is the only reduced Gröbner basis for the ideal $\langle 1\rangle$.

Proof:

- Let g_{1}, \ldots, g_{s} be a Gröbner basis of $I=\langle 1\rangle$.
- Thus, $1 \in\langle\operatorname{LT}(I)\rangle=\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle$.
- Hence, 1 is divisible by some $\operatorname{LT}\left(g_{i}\right)$, say $\operatorname{LT}\left(g_{1}\right)$.
- So $\operatorname{LT}\left(g_{1}\right)$ is constant.
- Then every other $\operatorname{LT}\left(g_{i}\right)$ is a multiple of that constant, so g_{2}, \ldots, g_{s} can be removed from the Gröbner basis.
- Since $\operatorname{LT}\left(g_{1}\right)$ is constant, g_{1} itself is constant.

0/1-Integer Programming: Feasibility

- Normally,

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \\
& x_{j} \in\{0,1\} \\
& i=1, \ldots m \\
& j=1, \ldots, n
\end{aligned}
$$

- Equivalently,

$$
\begin{array}{rl}
f_{i}:=\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}=0 & i=1, \ldots m \\
g_{j}:=x_{j}^{2}-x_{j}=0 & j=1, \ldots, n
\end{array}
$$

An algorithm:
In: $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$
Out: a feasible solution \bar{x} to $A x=b, x \in\{0,1\}^{n}$

1. $I:=\left\langle f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{n}\right\rangle$
2. Compute a Gröbner basis G of I using lex order
3. IF $G=\{1\}$ THEN
4. "infeasible"
5. ELSE
6. Find \bar{x}_{n} in $V\left(G_{n_{1}}\right)$
7. FOR $l=n-1$ TO 1 DO
8. Extend $\left(\bar{x}_{l+1}, \ldots, \bar{x}_{n}\right)$ to $\left(\bar{x}_{l}, \ldots, \bar{x}_{n}\right) \in V\left(G_{l-1}\right)$

Example:

- Consider

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}+15 x_{6} & =15 \\
x_{1}, x_{2}, \ldots, x_{6} & \in\{0,1\}
\end{aligned}
$$

- The reduced Gröbner basis is $G=\left\{x_{6}^{2}-x_{6}, x_{5}+x_{6}-1, x_{4}+x_{6}-1, x_{3}+x_{6}-1, x_{2}+x_{6}-\right.$ $\left.1, x_{1}+x_{6}-1\right\}$
- $G_{5}=\left\{x_{6}^{2}-x_{6}\right\}$, so $\bar{x}_{6}=0$ and $\bar{x}_{6}=1$ are possible solutions
- We get $\bar{x}=(1,1,1,1,1,0)$ or $\bar{x}=(0,0,0,0,0,1)$

Structural insights:

- The polynomials in the reduced Gröbner basis can be partitioned into n sets:
- S_{n} contains only one polynomial, which is either $x_{n}, x_{n}-1$, or $x_{n}^{2}-x_{n}$.
$-S_{i}$, for $1 \leq i \leq n-1$, contains polynomials in x_{n}, \ldots, x_{i}.
- Similar to row echelon form in Gaussian elimination.
- Allows solving the system variable by variable.

Example:

- Consider

$$
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+6 x_{5}=6, \quad x_{1}, \ldots, x_{5} \in\{0.1\}
$$

- The reduced Gröbner basis is

$$
\left\{x_{5}^{2}-x_{5}, x_{4} x_{5}, x_{4}^{2}-x_{4}, x_{3}+x_{4}+x_{5}-1, x_{2}+x_{5}-1, x_{1}+x_{4}+x_{5}-1\right\}
$$

- The sets are

$$
\begin{aligned}
S_{5} & =\left\{x_{5}^{2}-x_{5}\right\} \\
S_{4} & =\left\{x_{4} x_{5}, x_{4}^{2}-x_{4}\right\} \\
S_{3} & =\left\{x_{3}+x_{4}+x_{5}-1\right\} \\
S_{2} & =\left\{x_{2}+x_{5}-1\right\} \\
S_{1} & =\left\{x_{1}+x_{4}+x_{5}-1\right\}
\end{aligned}
$$

0/1-Integer Programming: Optimization

Modify the algorithm as follows:

- Let $h=y-\sum_{j=1}^{n} c_{j} x_{j}$.
- Consider $k\left[x_{1}, \ldots, x_{n}, y\right]$ and $V\left(f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{m}, h\right)$.
- Use lex order with $x_{1}>\cdots>x_{n}>y$.
- The reduced Gröbner basis is either $\{1\}$ or its intersection with $k[y]$ is a polynomial in y.
- Every root of this polynomial is an objective function value that can be feasibly attained.
- Find the minimum root, and work backwards to get the associated values of x_{n}, \ldots, x_{1}.

Example:

- $\min \left\{x_{1}+2 x_{2}+3 x_{3}: x_{1}+2 x_{2}+2 x_{3}=3, x_{1}, \ldots, x_{3} \in\{0,1\}\right\}$.
- The reduced Gröbner basis is

$$
\left\{12-7 y+y^{2}, 3+x_{3}-y,-4+x_{2}+y, 1-x_{1}\right\} .
$$

- The two roots of $12-7 y+y^{2}$ are 3 and 4 .
- The minimum value is $y=3$, and the corresponding solution is $(1,1,0)$.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

