6.859J/15.083J Integer Programming and Combinatorial Optimization

Professors: Dimitris Bertsimas, Andreas Schulz,

1 Structure of Class

- Formulations, complexity and relaxations, Lec. 1-9
- Robust Discrete Optimization, Lec. 10-11
- Algebra and geometry of IO, Lec. 12-15
- Algorithms for IO, Lec. 16-23
- Mixed Integer Optimization, Lec. 24-25

2 Requirements

- Homeworks: 30%
- Midterm Exam: 30\%
- Final Exam: 40%
- Contributions to class: An important tie breaker

Use of CPLEX for solving IO problems

3 Todays Lecture

- Modeling with integer variables
- What is a good formulation?
- Theme: The Power of Formulations

4 Integer Optimization

4.1 Mixed IO

$$
\begin{array}{cll}
(\mathrm{MIO}) & \max & \boldsymbol{c}^{\prime} \boldsymbol{x}+\boldsymbol{h}^{\prime} \boldsymbol{y} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{y} \leq \boldsymbol{b} \\
& \boldsymbol{x} \in Z_{+}^{n}(\boldsymbol{x} \geq 0, \boldsymbol{x} \text { integer }) \\
& \boldsymbol{y} \in R_{+}^{m}(\boldsymbol{y} \geq 0)
\end{array}
$$

4.2 Pure IO

$$
\begin{array}{ll}
\text { (IO) } \max & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} \in \bar{Z}_{+}^{n}
\end{array}
$$

Important special case: Binary Optimization

$$
\begin{array}{cl}
(\mathrm{BO}) \max & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} \in\{0,1\}^{n}
\end{array}
$$

4.3 LO

$$
\begin{array}{cl}
(\mathrm{LO}) \max & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{B} \boldsymbol{y} \leq \boldsymbol{b} \\
& \boldsymbol{y} \in R_{+}^{n}
\end{array}
$$

5 Modeling with Binary Variables

5.1 Binary Choice

$x \in\left\{\begin{array}{lc}1, & \text { if event occurs } \\ 0, & \text { otherwise }\end{array}\right.$
Example 1: IO formulation of the knapsack problem
n : projects, total budget b
$a_{j}: \quad$ cost of project j
$c_{j}: \quad$ value of project j
$x_{j}=\left\{\begin{array}{lc}1, & \text { if project } j \text { is selected. } \\ 0, & \text { otherwise. }\end{array}\right.$

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum^{n} a_{j} x_{j} \leq b \\
& x_{j} \in\{0,1\}
\end{aligned}
$$

5.2 Modeling relations

- At most one event occurs

$$
\sum_{j} x_{j} \leq 1
$$

- Neither or both events occur

$$
x_{2}-x_{1}=0
$$

- If one event occurs then, another occurs

$$
0 \leq x_{2} \leq x_{1}
$$

- If $x=0$, then $y=0$; if $x=1$, then y is uncontrained

$$
0 \leq y \leq U x, \quad x \in\{0,1\}
$$

5.3 The assignment problem

n people
m jobs
$c_{i j}$: cost of assigning person j to job i.
$x_{i j}=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$ person j is assigned to job i
$\min \sum_{n} c_{i j} x_{i j}$
s.t. $\sum_{j=1}^{n} x_{i j}=1$ each job is assigned $\sum_{i=1}^{m} x_{i j} \leq 1$ each person can do at most one job. $x_{i j} \in\{0,1\}$

5.4 Multiple optimal solutions

- Generate all optimal solutions to a BOP.

$$
\begin{array}{cl}
\max & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} \in\{0,1\}^{n}
\end{array}
$$

- Generate third best?
- Extensions to MIO?

5.5 Modeling nonconvex objective functions

- How to model min $c(\boldsymbol{x})$, where $c(\boldsymbol{x})$ is piecewise linear but not convex?

6 What is a good formulation?

6.1 Facility Location

- Data
$N=\{1 \ldots n\}$ potential facility locations
$I=\{1 \ldots m\}$ set of clients
$c_{j}: \quad$ cost of facility placed at j
$h_{i j}$: cost of satisfying client i from facility j.
- Decision variables

$$
\left.\begin{array}{rl}
x_{j}= & \left\{\begin{array}{l}
1, \\
0,
\end{array} \quad \text { a facility is placed at location } j\right. \\
y_{i j}= & \text { otherwise }
\end{array}\right\}
$$

$$
\begin{aligned}
I Z_{1}=\min & \sum_{j=1}^{n} c_{j} x_{j}+\sum_{i=1}^{m} \sum_{j=1}^{n} h_{i j} y_{i j} \\
\text { s.t. } & \sum_{j=1}^{n} y_{i j}=1 \\
& y_{i j} \leq x_{j} \\
& x_{j} \in\{0,1\}, 0 \leq y_{i j} \leq 1 .
\end{aligned}
$$

Consider an alternative formulation.

$$
\begin{aligned}
I Z_{2}=\min & \sum_{j=1}^{n} c_{j} x_{j}+\sum_{i=1}^{m} \sum_{j=1}^{n} h_{i j} y_{i j} \\
\text { s.t. } & \sum_{j=1}^{n} y_{i j}=1 \\
& \sum_{i=1}^{m} y_{i j} \leq m \cdot x_{j} \\
& x_{j} \in\{0,1\}, 0 \leq y_{i j} \leq 1 .
\end{aligned}
$$

Are both valid?
Which one is preferable?

6.2 Observations

- $I Z_{1}=I Z_{2}$, since the integer points both formulations define are the same.
-

$$
\begin{gathered}
P_{1}=\left\{(\boldsymbol{x}, \boldsymbol{y}): \sum_{j=1}^{n} y_{i j}=1, y_{i j} \leq x_{j}, \begin{array}{l}
0 \leq x_{j} \leq 1 \\
0 \leq y_{i j} \leq 1
\end{array}\right\} \\
\left.\begin{array}{c}
P_{2}=\left\{(\boldsymbol{x}, \boldsymbol{y}): \sum_{j=1}^{n} y_{i j}=1, \sum_{i=1}^{m} y_{i j} \leq m \cdot x_{j},\right. \\
0 \leq x_{j} \leq 1 \\
0 \leq y_{i j} \leq 1
\end{array}\right\}
\end{gathered}
$$

- Let

$$
\begin{gathered}
Z_{1}=\min _{\boldsymbol{c} \boldsymbol{x}+\boldsymbol{h} \boldsymbol{y},}^{(\boldsymbol{x}, \boldsymbol{y}) \in P_{1}}
\end{gathered} \quad Z_{2}=\quad \min \boldsymbol{c} \boldsymbol{x}+\boldsymbol{h} \boldsymbol{y} \boldsymbol{y}
$$

- $Z_{2} \leq Z_{1} \leq I Z_{1}=I Z_{2}$

6.3 Implications

- Finding $I Z_{1}\left(=I Z_{2}\right)$ is difficult.
- Solving to find Z_{1}, Z_{2} is a LOP. Since Z_{1} is closer to $I Z_{1}$ several methods (branch and bound) would work better (actually much better).
- Suppose that if we solve $\min \boldsymbol{c} \boldsymbol{x}+\boldsymbol{h} \boldsymbol{y},(\boldsymbol{x}, \boldsymbol{y}) \in P_{1}$ we find an integral solution. Have we solved the facility location problem?
- Formulation 1 is better than Formulation 2. (Despite the fact that 1 has a larger number of constraints than 2.)
- What is then the criterion?

6.4 Ideal Formulations

- Let P be a linear relaxation for a problem
- Let

$$
H=\left\{(\boldsymbol{x}, \boldsymbol{y}): \boldsymbol{x} \in\{0,1\}^{n}\right\} \cap P
$$

- Consider Convex Hull (H)

$$
=\left\{\boldsymbol{x}: \boldsymbol{x}=\sum_{i} \lambda_{i} x^{i}, \sum_{i} \lambda_{i}=1, \lambda_{i} \geq 0, x^{i} \in H\right\}
$$

- The extreme points of $C H(H)$ have $\{0,1\}$ coordinates.
- So, if we know $C H(H)$ explicitly, then by solving mincx$+\boldsymbol{h y},(\boldsymbol{x}, \boldsymbol{y}) \in$ $C H(H)$ we solve the problem.
- Message: Quality of formulation is judged by closeness to $C H(H)$.

$$
C H(H) \subseteq P_{1} \subseteq P_{2}
$$

7 Minimum Spanning Tree (MST)

- How do telephone companies bill you?
- It used to be that rate/minute: Boston \rightarrow LA proportional to distance in MST
- Other applications: Telecommunications, Transportation (good lower bound for TSP)
- Given a graph $G=(V, E)$ undirected and $\operatorname{Costs} c_{e}, e \in E$.
- Find a tree of minimum cost spanning all the nodes.
- Decision variables $x_{e}= \begin{cases}1, & \text { if edge } e \text { is included in the tree } \\ 0, & \text { otherwise }\end{cases}$
- The tree should be connected. How can you model this requirement?
- Let S be a set of vertices. Then S and $V \backslash S$ should be connected
- Let $\delta(S)=\left\{e=(i, j) \in E: \begin{array}{l}i \in S \\ j \in V \backslash S\end{array}\right\}$
- Then,

$$
\sum_{e \in \delta(S)} x_{e} \geq 1
$$

- What is the number of edges in a tree?
- Then, $\sum_{e \in E} x_{e}=n-1$

7.1 Formulation

$$
\begin{aligned}
I Z_{M S T}= & \min \sum_{e \in E} c_{e} x_{e} \\
H & \left\{\begin{array}{l}
\sum_{e \in \delta(S)} x_{e} \geq 1 \\
\sum_{e \in E} x_{e}=n-1 \\
x_{e} \in\{0,1\} .
\end{array} \quad \forall S \subseteq V, S \neq \emptyset, V\right.
\end{aligned}
$$

Is this a good formulation?

$$
\begin{gathered}
P_{c u t}=\left\{\boldsymbol{x} \in R^{|E|}: 0 \leq \boldsymbol{x} \leq \boldsymbol{e}\right. \\
\sum_{e \in E} x_{e}=n-1 \\
\left.\sum_{e \in \delta(S)} x_{e} \geq 1 \forall S \subseteq V, S \neq \emptyset, V\right\}
\end{gathered}
$$

Is $P_{\text {cut }}$ the $C H(H)$?

7.2 What is $C H(H)$?

Let

$$
\begin{gathered}
P_{s u b}=\left\{x \in R^{|E|}: \sum_{e \in E} x_{e}=n-1\right. \\
\left.\sum_{e \in E(S)} x_{e} \leq|S|-1 \forall S \subseteq V, S \neq \emptyset, V\right\}
\end{gathered}
$$

Why is this a valid IO formulation?

- Theorem: $P_{\text {sub }}=C H(H)$.
- $\Rightarrow P_{s u b}$ is the best possible formulation.
- MESSAGE: Good formulations can have an exponential number of constraints.

8 The Traveling Salesman Problem

Given $G=(V, E)$ an undirected graph. $V=\{1, \ldots, n\}$, costs $c_{e} \forall e \in E$. Find a tour that minimizes total length.

8.1 Formulation I

$x_{e}=\left\{\begin{array}{lc}1, & \text { if edge } e \text { is included in the tour. } \\ 0, & \text { otherwise. }\end{array}\right.$

$$
\begin{array}{ll}
\min & \sum_{e \in E} c_{e} x_{e} \\
\text { s.t. } & \sum_{e \in \delta(S)} x_{e} \geq 2, \quad S \subseteq E \\
& \sum_{e \in \delta(i)} x_{e}=2, \quad i \in V \\
& x_{e} \in\{0,1\}
\end{array}
$$

8.2 Formulation II

$$
\begin{array}{cl}
\min & \sum c_{e} x_{e} \\
\text { s.t. } & \sum_{e \in E(S)} x_{e} \leq|S|-1, \quad S \subseteq E \\
& \sum_{e \in \delta(i)} x_{e}=2, \quad i \in V \\
& x_{e} \in\{0,1\}
\end{array}
$$

$$
\begin{aligned}
P_{c u t}^{T S P}= & \left\{x \in R^{|E|} ; \sum_{e \in \delta} x_{e} \geq 2, \sum_{e \in \delta(i)} x_{e}=2\right. \\
& \left.0 \leq x_{e} \leq 1\right\} \\
P_{s u b}^{T S P}= & \left\{x \in R^{|E|} ; \sum_{e \in \delta(i)} x_{e}=2\right. \\
& \sum_{e \in \delta(S)} x_{e} \leq|S|-1 \\
& \left.0 \leq x_{e} \leq 1\right\}
\end{aligned}
$$

- Theorem: $P_{c u t}^{T S P}=P_{s u b}^{T S P} \nsupseteq C H(H)$
- Nobody knows $C H(H)$ for the TSP

9 Minimum Matching

- Given $G=(V, E) ; c_{e}$ costs on $e \in E$. Find a matching of minimum cost.
- Formulation:

$$
\begin{array}{cl}
\min & \sum c_{e} x_{e} \\
\mathrm{s.t.} & \sum_{e \in \delta(i)} x_{e}=1, \quad i \in V \\
& x_{e} \in\{0,1\}
\end{array}
$$

- Is the linear relaxation $C H(H)$?

Let

$$
\begin{aligned}
P_{M A T}= & \left\{x \in R^{|E|}: \sum_{e \in \delta(i)} x_{e}=1\right. \\
& \sum_{e \in \delta(S)} x_{e} \geq 1 \quad|S|=2 k+1, S \neq \emptyset \\
& \left.x_{e} \geq 0\right\}
\end{aligned}
$$

Theorem: $P_{M A T}=C H(H)$

10 Observations

- For MST, Matching there are efficient algorithms. $C H(H)$ is known.
- For TSP \nexists efficient algorithm. TSP is an $N P-$ hard problem. $C H(H)$ is not known.
- Conjuecture: The convex hull of problems that are polynomially solvable are explicitly known.

11 Summary

1. Modeling with binary variables allows a lot of modelling power.
2. An IO formulation is better than another one if the polyhedra of their linear relaxations are closer to the convex hull of the IO.
3. A good formulation may have an exponential number of constraints.
4. Conjecture: Formulations characterize the complexity of problems. If a problem is solvable in polynomial time, then the convex hull of solutions is known.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

