# 15.083: Integer Programming and Combinatorial Optimization Problem Set 4 Solutions 

Due 10/21/2009

## Problem (4.10)

Let $Z_{R}, Z_{N R}$ be the optimal cost with and without release dates respectively. Let $N R$ be the set of acceptable completion times in the problem with no release dates. Release dates insert the constraints $C_{i} \geq p_{i}+r_{i}$ which we relax to obtain a problem with no release dates. For fixed $\lambda$, by prop 3.6 we have an optimal ordering (w.l.o.g $1, \ldots, n$ ) and thus can obtain the optimal cost in closed form:

$$
\begin{aligned}
Z_{R} & \geq Z(\lambda) \\
& =\min _{C \in N R}\left\{\sum_{i=1}^{n} w_{i} C_{i}+\sum_{i=1}^{n} \lambda_{i}\left(r_{i}+p_{i}-C_{i}\right)\right\} \\
& =\min _{C \in N R}\left\{\sum_{i=1}^{n}\left(w_{i}-\lambda_{i}\right) C_{i}+\sum_{i=1}^{n} \lambda_{i}\left(r_{i}+p_{i}\right)\right\} \\
& =\sum_{i=1}^{n}\left(w_{i}-\lambda_{i}\right) \sum_{j=1}^{i} p_{j}+\sum_{i=1}^{n} \lambda_{i}\left(r_{i}+p_{i}\right) \\
& =\sum_{i=1}^{n} w_{i} \sum_{j=1}^{i} p_{j}+\sum_{i=1}^{n} \lambda_{i}\left(r_{i}-\sum_{j=1}^{i-1} p_{j}\right) \\
& \geq Z_{N R}+\sum_{i=1}^{n} \lambda_{i}\left(r_{i}-\sum_{j=1}^{i-1} p_{j}\right)
\end{aligned}
$$

we wish to maximize this lower bound over $\lambda_{i} \in\left\{0, w_{i}\right\}$. Such a maximization yields an IP which is difficult to solve (since selecting specific values for $\lambda_{i}$ change the order of jobs. We can bound this IP from below in polynomial time in the following manner: We order the jobs such that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$, define the quantity $p_{i, k}=\sum_{j=1}^{i-1} p_{j}+\sum_{j=i+1}^{k} p_{j}$ which bounds from above the time it will take to process all jobs prior to i if we schedule job i to be the $k^{t h}$ processed. Then define $a_{i, k}=w_{i}\left(r_{i}-p_{i, k}\right)^{+}$. We may then solve the assignment problem:

```
\(Z_{A s s i g n}=\min \sum_{i, k} a_{i, k} x_{i, k}\)
subject to
    \(\sum_{i} x_{i, k}=1 \quad \forall k\)
    \(\sum_{k} x_{i, k}=1 \quad \forall i\)
    \(x_{i, k} \in\{0,1\} \quad \forall i, k\)
```

and bound $Z_{R}$ as follows:

$$
Z_{R} \geq Z_{N R}+Z_{\text {Assign }}
$$

Problem (4.11) Relaxing the constraint $x=y$ is equivalent to optimizing over the set
$\{(x, y) \in \operatorname{conv}(A x \geq b, D y \geq d): x=y\}=\{(x, y): x \in \operatorname{conv}(A x \geq b), y \in \operatorname{conv}(D y \geq d), x=y\}=$ $\{(x, y) \in \operatorname{conv}(A x \geq b) \cap \operatorname{conv}(D x \geq d)\}$

Problem (4.12)
(a)

$$
\begin{array}{rlll|}
\hline \max \sum_{(i, j) \in E} w_{i j} x_{i j} & & \\
\text { subject to } & & \\
x_{s t} & =1 & \\
x_{i j}+x_{j k}+x_{i k} & \leq 2 & \forall i, j, k \\
x_{i j}-x_{j k}-x_{i k} & \leq 0 & \forall i, j, k \\
x_{i j} & \in\{0,1\} & \forall i, j, k \\
\hline
\end{array}
$$

(b) These inequalities state that for any 3 node, at least 2 lie in the same partition and if $i$ and $j$ are in different partitions then for some other node $k$ it must be that $k$ is in a different partition from either $i$ or $j$.
(c) We could relax the constraints $x_{i j}+x_{j k}+x_{i k} \leq 2$ and $x_{i j}-x_{j k}-x_{i k} \leq 0$ to end up with a subproblem that is efficaciously solvable. We could apply the subgradient algorithm (4.2) to optimize over our multipliers using subgradients of $2-x_{i j}-x_{j k}-x_{i k}$ and $-x_{i j}+x_{j k}+x_{i k}$ and an appropriately chosen stepsize. We need to be wary of the fact that our multipliers need to be kept non-negative, so at each step, we should round any negative multipliers up to 0 . The simplex algorithm will have to cope with $O\left(n^{2}\right)$ variables and $O\left(n^{3}\right)$ constraints, but the constraint matrix is very sparse, whereas each of the Lagrangian subproblems have a simple closed form solution computable in $O\left(n^{2}\right)$ time. So it is difficult to judge which method will converge faster. Since the polyhedron we are optimizing over in the Lagrangian relaxation is integral, it will not produce a tighter bound.

## Problem (5.8)

(a) Given a solution $x^{*}$ we first check that $0 \leq x_{e}^{*} \leq 1$. The we assign weights $x_{e}^{*}$ to each edge $e \in V$. For each edge $(i, j)$ we solve the min $i-j$ cut problem to obtain a set $S_{(i, j)}$ and check that $\sum_{e \in \delta\left(S_{(i, j)}\right)} x_{e}^{*} \geq r_{(i, j)}$. If all of these constraints are satisfied then $x^{*}$ is feasible, else we generate a separating hyperplane.
(b) We can use the same approach as part (a) by letting $r_{(i, j)}=\mathbf{1}\{i, j \in T\}$

MIT OpenCourseWare
http://ocw.mit.edu

### 15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

