
� � 

� � � � 

� � � 

� � � � 

� � 

� � 

� 

� 

15.083: Integer Programming and Combinatorial Optimization 
Problem Set 4 Solutions 

Due 10/21/2009 

Problem (4.10) 
Let ZR, ZNR be the optimal cost with and without release dates respectively. Let NR be the set of acceptable 
completion times in the problem with no release dates. Release dates insert the constraints Ci ≥ pi + ri which 
we relax to obtain a problem with no release dates. For fixed λ, by prop 3.6 we have an optimal ordering 
(w.l.o.g 1, ..., n) and thus can obtain the optimal cost in closed form: 

ZR ≥ Z(λ) � � 
n n

= min wiCi + λi (ri + pi − Ci) 
C∈NR 

i=1 i=1 

n n

= min (wi − λi)Ci + λi (ri + pi) 
C∈NR 

i=1 i=1 

n i n

= (wi − λi) pj + λi (ri + pi) 
i=1 j=1 i=1 ⎛ ⎞ 
n i n i−1

= wi pj + λi ⎝ri − pj ⎠ 
i=1 j=1 i=1 j=1 ⎛ ⎞ 

n i−1

≥ ZNR + λi ⎝ri − pj ⎠ 
i=1 j=1 

we wish to maximize this lower bound over λi ∈ {0, wi}. Such a maximization yields an IP which is difficult to 
solve (since selecting specific values for λi change the order of jobs. We can bound this IP from below in 
polynomial time in the following manner: We order the jobs such that p1 ≥ p2 ≥ · · · ≥ pn, define the quantity 

i−1 k

pi,k = pj + pj which bounds from above the time it will take to process all jobs prior to i if we schedule 
j=1 j=i+1 

job i to be the kth processed. Then define ai,k = wi(ri − pi,k)+ . We may then solve the assignment problem: 
ZAssign = min ai,kxi,k


i,k


subject to� i xi,k = 1 ∀k


k xi,k = 1 ∀i

xi,k ∈ {0, 1} ∀i, k 

and bound ZR as follows: 

ZR ≥ ZNR + ZAssign 

Problem (4.11) Relaxing the constraint x = y is equivalent to optimizing over the set

{(x, y) ∈ conv(Ax ≥ b, Dy ≥ d) : x = y} = {(x, y) : x ∈ conv(Ax ≥ b), y ∈ conv(Dy ≥ d), x = y} =

{(x, y) ∈ conv(Ax ≥ b) ∩ conv(Dx ≥ d)}


Problem (4.12) 

1 



� (a) 
max wij xij 

(i,j)∈E 

subject to 
xst = 1


xij + xjk + xik ≤ 2 ∀i, j, k

xij − xjk − xik ≤ 0 ∀i, j, k


xij ∈ {0, 1} ∀i, j, k 

(b) These inequalities state that for any 3 node, at least 2 lie in the same partition and if i and j are in different 
partitions then for some other node k it must be that k is in a different partition from either i or j. 

(c) We could relax the constraints xij + xjk + xik ≤ 2 and xij − xjk − xik ≤ 0 to end up with a subproblem that 
is efficaciously solvable. We could apply the subgradient algorithm (4.2) to optimize over our multipliers 
using subgradients of 2 − xij − xjk − xik and −xij + xjk + xik and an appropriately chosen stepsize. We 
need to be wary of the fact that our multipliers need to be kept non-negative, so at each step, we should 
round any negative multipliers up to 0. The simplex algorithm will have to cope with O(n2) variables and 
O(n3) constraints, but the constraint matrix is very sparse, whereas each of the Lagrangian subproblems 
have a simple closed form solution computable in O(n2) time. So it is difficult to judge which method will 
converge faster. Since the polyhedron we are optimizing over in the Lagrangian relaxation is integral, it will 
not produce a tighter bound. 

Problem (5.8) 

(a) Given a solution x∗ we first check that 0 ≤ x∗ ≤ 1. The we assign weights x∗ to each edge e ∈ V . For each e e � 
edge (i, j) we solve the min i − j cut problem to obtain a set S(i,j) and check that e∈δ(S(i,j)) x

∗ 
e ≥ r(i,j). If 

all of these constraints are satisfied then x∗ is feasible, else we generate a separating hyperplane. 

(b) We can use the same approach as part (a) by letting r(i,j) = 1{i, j ∈ T } 

2 



MIT OpenCourseWare
http://ocw.mit.edu 

15.083J / 6.859J Integer Programming and Combinatorial Optimization
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

