15.083J/6.859J Integer Optimization

Lecture 5: Ideal formulations I

1 Outline

- Total unimodularity
- Dual Methods

2 Total unimodularity

- $S=\left\{\boldsymbol{x} \in \mathcal{Z}_{+}^{n} \mid \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}, \boldsymbol{A} \in \mathcal{Z}^{m \times n}$ and $\boldsymbol{b} \in \mathcal{Z}^{m}$.
- $P=\left\{\boldsymbol{x} \in \Re_{+}^{n} \mid \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}$.
- When $P=\operatorname{conv}(S)$ for all integral vectors \boldsymbol{b} ?

2.1 Cramer's rule

- $\boldsymbol{A} \in \Re^{n \times n}$ nonsingular.
- $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \Longleftrightarrow \boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b} \Longleftrightarrow \forall i: x_{i}=\frac{\operatorname{det}\left(\boldsymbol{A}^{i}\right)}{\operatorname{det}(\boldsymbol{A})}$.
- $\boldsymbol{A}^{i}: \boldsymbol{A}_{j}^{i}=\boldsymbol{A}_{j}$ for all $j \in\{1, \ldots n\} \backslash\{i\}$ and $\boldsymbol{A}_{i}^{i}=\boldsymbol{b}$.

2.2 Definition

- $\boldsymbol{A} \in \mathcal{Z}^{m \times n}$ of full row rank is unimodular if the determinant of each basis of \boldsymbol{A} is 1 , or -1 . A matrix $\boldsymbol{A} \in \mathcal{Z}^{m \times m}$ of full row rank is unimodular if $\operatorname{det}(\boldsymbol{A})= \pm 1$.
- A matrix $\boldsymbol{A} \in \mathcal{Z}^{m \times n}$ is totally unimodular if the determinant of each square submatrix of \boldsymbol{A} is 0,1 , or -1 .

2.3 Examples

$$
\begin{aligned}
& \text { - } \boldsymbol{A}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \text { is not TU: } \operatorname{det}\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\right)=-2 . \\
& \text { - }\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \text { is TU. }
\end{aligned}
$$

2.4 Proposition

- \boldsymbol{A} is TU if and only if $[\boldsymbol{A}, \boldsymbol{I}]$ is unimodular.
- \boldsymbol{A} is TU if and only if $\left[\begin{array}{r}\boldsymbol{A} \\ -\boldsymbol{A} \\ \boldsymbol{I} \\ -\boldsymbol{I}\end{array}\right]$ is TU.
- \boldsymbol{A} is TU if and only if \boldsymbol{A}^{\prime} is TU.

2.5 Theorem

- \boldsymbol{A} integer matrix of full row rank. \boldsymbol{A} is unimodular if and only if $P(\boldsymbol{b})=\{\boldsymbol{x} \in$ $\left.\Re_{+}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\}$ is integral for all $\boldsymbol{b} \in \mathcal{Z}^{m}$ for which $P(\boldsymbol{b}) \neq \varnothing$.
- \boldsymbol{A} integer matrix. \boldsymbol{A} is TU if and only if $P(\boldsymbol{b})=\left\{\boldsymbol{x} \in \Re_{+}^{n} \mid \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}$ is integral for all $\boldsymbol{b} \in \mathcal{Z}^{m}$ for which $P(\boldsymbol{b}) \neq \varnothing$.

2.5.1 Proof

- Assume that \boldsymbol{A} is unimodular. $\boldsymbol{b} \in \mathcal{Z}^{m}$ and $P(\boldsymbol{b}) \neq \varnothing$.
- $\boldsymbol{x}=\left(\boldsymbol{x}_{B}, \boldsymbol{x}_{N}\right)$ extreme point of $P(\boldsymbol{b}), \boldsymbol{x}_{B}=\boldsymbol{A}_{B}^{-1} \boldsymbol{b}$ and $\boldsymbol{x}_{N}=\mathbf{0}$.
- Since \boldsymbol{A} unimodular $\operatorname{det}\left(\boldsymbol{A}_{B}\right)= \pm 1$. By Cramer's rule and the integrality of \boldsymbol{A}_{B} and $\boldsymbol{b}, \boldsymbol{x}_{B}$ is integral.
- $P(\boldsymbol{b})$ is integral.
- Conversely, $P(\boldsymbol{b})$ integral for all $\boldsymbol{b} \in \mathcal{Z}^{m}$.
- $B \subseteq\{1, \ldots, n\}$ with \boldsymbol{A}_{B} nonsingular.
- $\boldsymbol{b}=\boldsymbol{A}_{B} \boldsymbol{z}+\boldsymbol{e}_{i}$, where \boldsymbol{z} integral: $\boldsymbol{z}+\boldsymbol{A}_{B}^{-1} \boldsymbol{e}_{i} \geq \mathbf{0}$ for all i.
- $\boldsymbol{A}_{B}^{-1} \boldsymbol{b}=\boldsymbol{z}+\boldsymbol{A}_{B}^{-1} \boldsymbol{e}_{i} \in \mathcal{Z}^{m}$ for all i.
- i th column of \boldsymbol{A}_{B}^{-1} is integral for all i.
- \boldsymbol{A}_{B}^{-1} is an integer matrix, and thus, since \boldsymbol{A}_{B} is also an integer matrix, and $\operatorname{det}\left(\boldsymbol{A}_{B}\right) \operatorname{det}\left(\boldsymbol{A}_{B}^{-1}\right)=1$, we obtain that $\operatorname{det}\left(\boldsymbol{A}_{B}\right)=1$ or -1 .
- For second part: \boldsymbol{A} is TU if and only if $[\boldsymbol{A}, \boldsymbol{I}]$ is unimodular. For any $\boldsymbol{b} \in \mathcal{Z}^{m}$ the extreme points of $\left\{\boldsymbol{x} \in \Re_{+}^{n} \mid \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}$ are integral if and only if the extreme points of $\left\{(\boldsymbol{x}, \boldsymbol{y}) \in \Re_{+}^{n+m} \mid \boldsymbol{A x}+\boldsymbol{I} \boldsymbol{y}=\boldsymbol{b}\right\}$ are integral.

2.6 Corollary

Let \boldsymbol{A} be an integral matrix.

- \boldsymbol{A} is TU if and only if $\{\boldsymbol{x} \mid \boldsymbol{A x}=\boldsymbol{b}, \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}\}$ is integral for all integral vectors \boldsymbol{b} and \boldsymbol{u}.
- \boldsymbol{A} is TU if and only if $\{\boldsymbol{x} \mid \boldsymbol{a} \leq \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{l} \leq \boldsymbol{x} \leq \boldsymbol{u}\}$ is integral for all integral vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{l}, \boldsymbol{u}$.

2.7 Theorems

- \boldsymbol{A} is TU if and only if each collection J of columns of \boldsymbol{A} can be partitioned into two parts so that the sum of the columns in one part minus the sum of the columns in the other part is a vector with entries $0,+1$, and -1 .
- \boldsymbol{A} is TU if and only if each collection Q of rows of \boldsymbol{A} can be partitioned into two parts so that the sum of the rows in one part minus the sum of the rows in the other part is a vector with entries only $0,+1$, and -1 .

2.8 Corollary

The following matrices are TU:

- The node-arc incidence matrix of a directed graph.
- The node-edge incidence matrix of an undirected bipartite graph.
- A matrix of zero-one elements, in which each column has its ones consecutively.

2.9 Example

$$
\boldsymbol{A}=\left[\begin{array}{rrrrrr}
1 & 0 & -1 & 0 & 0 & 0 \\
-1 & 1 & 0 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 & -1 & 1
\end{array}\right]
$$

2.10 Implications

Following problems can be solves as LOs:

- Network flows
- Matching in biparite graphs
- Stable set in biparite graphs.

3 Dual methods

-

$$
\begin{aligned}
Z_{\mathrm{LP}}=\min & c^{\prime} \boldsymbol{x} \\
\text { s.t. } & x \in P
\end{aligned}
$$

- Let P be a nonempty polyhedron with at least one extreme point. The polyhedron P is integral if and only if Z_{LP} is integer for all $\boldsymbol{c} \in \mathcal{Z}^{n}$.
- For converse, assume $\boldsymbol{x}^{*} \in P$, extreme point with x_{j}^{*} fractional. $c \in \mathcal{Z}^{n}: \boldsymbol{x}^{*}$ unique optimum.
- There exist $a \in \mathcal{Z}: \boldsymbol{x}^{*}$ optimum for $\overline{\boldsymbol{c}}=\boldsymbol{c}+(1 / a) \boldsymbol{e}_{j} . a \overline{\boldsymbol{c}}^{\prime} \boldsymbol{x}^{*}-a \boldsymbol{c}^{\prime} \boldsymbol{x}^{*}=x_{j}^{*}$, either $a \overline{\boldsymbol{c}}^{\prime} \boldsymbol{x}^{*}$ or $a \boldsymbol{c}^{\prime} \boldsymbol{x}^{*}$ is fractional. Contradiction.

3.1 Key idea

Construct a solution to the dual of the LP relaxation and an integer solution, feasible to IO with $Z_{\mathrm{H}}=Z_{\mathrm{D}}$. Since $Z_{\mathrm{D}} \leq Z_{\mathrm{LP}} \leq Z_{\mathrm{IP}} \leq Z_{\mathrm{H}}$, if $Z_{\mathrm{H}}=Z_{\mathrm{D}}$, $Z_{\mathrm{LP}}=Z_{\mathrm{IP}}$.

3.2 Submodular functions

- $f: 2^{N} \mapsto \Re_{+}$is submodular if

$$
f(S)+f(T) \geq f(S \cap T)+f(S \cup T), \quad \forall S, T \subset N .
$$

- $f: 2^{N} \mapsto \Re_{+}$is supermodular if

$$
f(S)+f(T) \leq f(S \cap T)+f(S \cup T), \quad \forall S, T \subset N .
$$

- It is nondecreasing, if

$$
f(S) \leq f(T), \quad \forall S \subset T
$$

3.3 Polymatroids

$$
\begin{array}{rll}
\text { maximize } & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { subject to } & \sum_{j \in S} x_{j} \leq f(S), & S \subset N, \\
& x_{j} \in \mathcal{Z}_{+}, & j \in N . \\
P(f)=\left\{\boldsymbol{x} \in \Re_{+}^{n} \mid \sum_{j \in S} x_{j} \leq f(S),\right. & \forall S \subset N\} .
\end{array}
$$

3.3.1 Theorem

If the function f is submodular, nondecreasing, integer valued, and $f(\varnothing)=0$, then $P(f)=\operatorname{conv}(F), F$ set of feasible integer solutions.

3.4 Proof

$$
\begin{array}{lll}
\text { maximize } & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { subject to } & \sum_{j \in S} x_{j} \leq f(S), & S \subset N . \\
& x_{j} \geq 0, & j \in N,
\end{array}
$$

dual

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{S \subset N} f(S) y_{S} & \\
\text { subject to } & \sum_{\{S \mid j \in S\}} y_{S} \geq c_{j}, & j \in N \\
& y_{S} \geq 0, & S \subset N
\end{array}
$$

- $c_{1} \geq c_{2} \geq \cdots \geq c_{k}>0 \geq c_{k+1} \geq \ldots \geq c_{n}$. $S^{j}=\{1, \ldots, j\}$ for $j \in N$, and $S^{0}=\varnothing$.
-

$$
\begin{aligned}
& x_{j}= \begin{cases}f\left(S^{j}\right)-f\left(S^{j-1}\right), & \text { for } 1 \leq j \leq k, \\
0, & \text { for } j>k .\end{cases} \\
& y_{S}= \begin{cases}c_{j}-c_{j+1}, & \text { for } S=S^{j}, 1 \leq j<k, \\
c_{k}, & \text { for } S=S^{k}, \\
0, & \text { otherwise } .\end{cases}
\end{aligned}
$$

- \boldsymbol{x} is integer, $x_{j} \geq 0$

$$
\begin{aligned}
\sum_{j \in T} x_{j} & =\sum_{\{j \mid j \in T, j \leq k\}}\left(f\left(S^{j}\right)-f\left(S^{j-1}\right)\right) \\
& \leq \sum_{\{j \mid j \in T, j \leq k\}}\left(f\left(S^{j} \cap T\right)-f\left(S^{j-1} \cap T\right)\right) \\
& =f\left(S^{k} \cap T\right)-f(\varnothing) \\
& \leq f(T)-f(\varnothing) \\
& =f(T)
\end{aligned}
$$

- \boldsymbol{y} is dual feasible because $y_{S} \geq 0$ and

$$
\begin{gathered}
\sum_{\{S \mid j \in S\}} y_{S}=y_{S^{j}}+\cdots+y_{S^{k}}=c_{j}, \text { if } j \leq k, \\
\sum_{\{S \mid j \in S\}} y_{S}=0 \geq c_{j}, \text { if } j>k .
\end{gathered}
$$

- Primal objective value: $\sum_{j=1}^{k} c_{j}\left(f\left(S^{j}\right)-f\left(S^{j-1}\right)\right)$
- Dual objective value:

$$
\sum_{j=1}^{k-1}\left(c_{j}-c_{j+1}\right) f\left(S^{j}\right)+c_{k} f\left(S^{k}\right)=\sum_{j=1}^{k} c_{j}\left(f\left(S^{j}\right)-f\left(S^{j-1}\right)\right)
$$

3.5 Matroids

- (N, \mathcal{I}) independence system, $r(T)=\max \{|S|: S \in \mathcal{I}, S \subset T\}$.

$$
\operatorname{maximize} \sum_{j \in N} c_{j} x_{j}
$$

- subject to $\sum_{j \in S} x_{j} \leq r(S), \quad \forall S \subset N$,

$$
x_{j} \in\{0,1\} .
$$

- Theorem: (N, \mathcal{I}) independence system. It is a matroid if and only if its rank function $r(S)=\max \{|S|: S \in \mathcal{I}, S \subset T\}$ is submodular.

3.6 Greedy algorithm

1. Given a matroid (N, \mathcal{I}), and weights c_{j} for $j \in N$, sort all elements of N in decreasing order of $c_{j}: c_{j_{1}} \geq c_{j_{2}} \geq \cdots \geq c_{j_{n}}$. Let $J=\emptyset ; k=1$.
2. For $k=1, \ldots, m$, if $J \cup\left\{j_{k}\right\}$ is an independent set, let $J=J \cup\left\{j_{k}\right\}$;
3. An optimum solution is given by the set J.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization
 Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

