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1 Outline 
Slide 1 

•	 Total unimodularity 

•	 Dual Methods 

2 Total unimodularity 
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•	 S = {x ∈ Zn | Ax ≤ b}, A ∈ Zm×n and b ∈ Zm .+ 

•	 P = {x ∈ �n 
+ | Ax ≤ b}. 

•	 When P = conv(S) for all integral vectors b? 

2.1 Cramer’s rule 
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•	 A ∈ �n×n nonsingular. 

det(Ai 
)•	 Ax = b ⇐⇒ x = A−1b ⇐⇒ ∀ i : xi = 

det(A) 
. 

•	 Ai: Ai
j = Aj for all j ∈ {1, . . . n} \ {i} and Ai

i = b. 

2.2 Definition 
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•	 A ∈ Zm×n of full row rank is unimodular if the determinant of each basis

of A is 1, or -1. A matrix A ∈ Zm×m of full row rank is unimodular if

det(A) =  ±1.


•	 A matrix  A ∈ Zm×n is totally unimodular if the determinant of each

square submatrix of A is 0, 1, or -1.


2.3 Examples 
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1 1 0 0 	 ⎛⎡ ⎤⎞ 
1 1 0  ⎢	 1 0 1 1  ⎥ ⎢ ⎥ ⎜⎢ 1 0 1  ⎥⎟ •	 A = ⎢ ⎥ is not TU: det ⎝⎣ ⎦⎠ = −2. ⎣	 0 1 1 0  ⎦ 
0 1 1  

1 1 0 1  

1 1 0  
• is TU. 

1 0 1  
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2.4 Proposition 
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•	 A is TU if and only if [A, I] is unimodular. ⎡ ⎤ 
A ⎢ -A ⎥ •	 A is TU if and only if ⎢ ⎥ is TU. ⎣ I ⎦ 
-I 

•	 A is TU if and only if A′ is TU. 

2.5 Theorem 
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•	 A integer matrix of full row rank. A is unimodular if and only if P (b) =  {x ∈ 
n	 m�+ | Ax = b} is integral for all b ∈ Z 	 �for which P (b) =Ø. 

•	 A integer matrix. A is TU if and only if P (b) =  {x ∈ �n | Ax ≤ b} is integral + 

for all b ∈ Zm for which P (b) =Ø.�

2.5.1 Proof 
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•	 Assume that A is unimodular. b ∈ Zm and P (b) =Ø.�
= A−1 •	 x = (xB , xN ) extreme  point of  P (b), xB B b and xN = 0. 

•	 Since A unimodular det(AB ) =  ±1. By Cramer’s rule and the integrality of

AB and b, xB is integral.


•	 P (b) is  integral.  

•	 Conversely, P (b) integral for all b ∈ Zm . 

•	 B ⊆ {1, . . . , n} with AB nonsingular. 

•	 b = AB z + ei, where  z integral: z + A−1 ei ≥ 0 for all i.B 

m •	 A−1b = z + A−1 ei ∈ Z for all i.B B 

•	 ith column of A−1 is integral for all i.B 

•	 A−1 is an integer matrix, and thus, since AB is also an integer matrix, and B


det(AB )det(A−1) = 1, we obtain that det(AB ) =1  or  -1. 
B 

•	 For second part: A is TU if and only if [A, I ] is unimodular. For any b ∈ Zm


the extreme points of {x ∈ �n | Ax ≤ b} are integral if and only if the extreme
+ 

points of {(x, y) ∈ �n+m | Ax + Iy  = b} are integral. + 

2.6 Corollary 
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Let A be an integral matrix. 

•	 A is TU if and only if {x | Ax = b, 0 ≤ x ≤ u} is integral for all integral

vectors b and u.


•	 A is TU if and only if {x | a ≤ Ax ≤ b, l ≤ x ≤ u} is integral for all

integral vectors a, b, l, u.
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2.7 Theorems 
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•	 A is TU if and only if each collection J of columns of A can be partitioned

into two parts so that the sum of the columns in one part minus the sum

of the columns in the other part is a vector with entries 0, +1, and -1.


•	 A is TU if and only if each collection Q of rows of A can be partitioned

into two parts so that the sum of the rows in one part minus the sum of

the rows in the other part is a vector with entries only 0, +1, and -1.


2.8 Corollary 
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The following matrices are TU: 

•	 The node-arc incidence matrix of a directed graph. 

•	 The node-edge incidence matrix of an undirected bipartite graph. 

•	 A matrix of zero-one elements, in which each column has its ones consec

utively.


2.9 Example 
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1 0 −1 0 0 0 ⎢ −1 1 0 −1 0 0 ⎥ 
A = ⎣	 ⎦0 −1 1 0 1 −1 

0 0 0 1 −1 1 

1 4 

5 

2 

3 

6 

3 

4 

2 

1 
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2.10 Implications 
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Following problems can be solves as LOs: 

•	 Network flows 

•	 Matching in biparite graphs 

•	 Stable set in biparite graphs. 

3 Dual methods 
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• 
ZLP = min  c ′ x 

s.t. x ∈ P 

•	 Let P be a nonempty polyhedron with at least one extreme point. The polyhe

dron P is integral if and only if ZLP is integer for all c ∈ Zn .


•	 For converse, assume x ∗ ∈ P , extreme point with xj 
∗ fractional. c ∈ Zn: x ∗


unique optimum.


•	 There exist a ∈ Z: x ∗ optimum for c = c + (1/a)ej . ac ′ x ∗ − ac ′ x ∗ = xj 
∗ , either 


ac ′ x ∗ or ac ′ x ∗ is fractional. Contradiction.


3.1 Key idea 
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Construct a solution to the dual of the LP relaxation and an integer solution, 
feasible to IO with ZH = ZD. Since  ZD ≤ ZLP ≤ ZIP ≤ ZH, if ZH = ZD, 
ZLP = ZIP. 

3.2 Submodular functions 
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•	 f : 2N � + is submodular if→ �
f(S) +  f(T ) ≥ f(S ∩ T ) +  f(S ∪ T ), ∀ S, T ⊂ N. 

•	 f : 2N � + is supermodular if→ �
f(S) +  f(T ) ≤ f(S ∩ T ) +  f(S ∪ T ), ∀ S, T ⊂ N. 

•	 It is nondecreasing, if  

f(S) ≤ f(T ), ∀ S ⊂ T.  
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3.3 Polymatroids 
Slide 17 

n 

maximize cj xj


j=1


subject to xj ≤ f(S), S ⊂ N, 
j∈S 

xj ∈ Z+, j ∈ N. 

P (f) =  x ∈ �n ∣ xj ≤ f(S), ∀ S ⊂ N .+ 
j∈S 

3.3.1 Theorem 
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If the function f is submodular, nondecreasing, integer valued, and f(Ø) = 0, 
then P (f) =  conv(F ), F  set of feasible integer solutions. 

3.4 Proof 
n ∑ 

maximize cj xj 

j=1 ∑ 
subject to xj ≤ f(S), 

j∈S 

xj ≥ 0, 

dual ∑ 
minimize f(S)yS 

S⊂N ∑ 
subject to yS ≥ cj , 

{S|j∈S} 

yS ≥ 0, 

•	 c1 ≥ c2 ≥ · · · ≥ ck > 0 ≥ ck+1 ≥ . . .  ≥ cn. 
S0 = Ø.  

• 
f(Sj ) − f(Sj−1), 

xj = 
0, ⎧ 
cj − cj+1, for S ⎨ 

yS = ck , for S ⎩ 
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S ⊂ N. 

j ∈ N, 

j ∈ N, 

S ⊂ N. 

Sj = {1, . . . , j} for j ∈ N , and  

for 1 ≤ j ≤ k, 

for j >  k.  

= Sj , 1 ≤ j <  k,  

= Sk , 
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0, otherwise. 

• x is integer, xj ≥ 0 

5 



∑ ∑ 

∑ 

∑ 

∑ 

∑	 ∑ 
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∑ 

• 

xj = 
( 
f(Sj) − f(Sj−1) 

) 

j∈T {j | j∈T,  j≤k} 

≤ 
( 
f(Sj ∩ T ) − f(Sj−1 ∩ T ) 

) 

{j | j∈T,  j≤k} 

= f(Sk ∩ T ) − f(Ø) 

≤ f(T ) − f(Ø) 

= f(T ). 

•	 y is dual feasible because yS ≥ 0 and  

yS = ySj + · · · + ySk = cj , if j  ≤ k, 
{S | j∈S} 

yS = 0  ≥ cj , if  j > k.  
{S | j∈S} 

•	 Primal objective value: 
∑k

j=1 cj 

( 
f(Sj) − f(Sj−1 ) 

) 

•	 Dual objective value: 

k−1	 k 

(cj − cj+1)f(Sj) +  ckf(Sk) =  cj 

( 
f(Sj) − f(Sj−1 ) 

) 
. 

j=1 j=1 

3.5 Matroids 

•	 (N, I) independence system, r(T ) = max{|S| : S ∈ I, S  ⊂ T}. 
maximize cjxj


j∈N


• subject to xj ≤ r(S), ∀ S ⊂ N, 
j∈S 

xj ∈ {0, 1}. 
•	 Theorem: (N, I) independence system. It is a matroid if and only if its rank 

function r(S) = max{|S| : S ∈ I, S  ⊂ T} is submodular. 

3.6 Greedy algorithm 

1.	 Given a matroid (N, I), and weights cj for j ∈ N , sort all elements of N 
in decreasing order of cj : cj1 ≥ cj2 ≥ · · · ≥ cjn . Let  J = Ø;  k = 1.  

2.	 For k = 1, . . . , m, if  J ∪ {jk} is an independent set, let J = J ∪ {jk}; 
3.	 An optimum solution is given by the set J . 
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