15.083: Integer Programming and Combinatorial Optimization Midterm Exam

10/26/2009

Problem (1) (50 pts) Indicate whether the following italicized statements are true or false. Provide a supporting argument and/or short proof.
(a) [5 pts] Consider the problem max $\sum_{j=1}^{n} c_{j}\left|x_{j}\right|$ subject to $\sum_{j=1}^{n} a_{j}\left|x_{j}\right| \leq b$.
[$\mathbf{T} / \mathbf{F}]:$ The problem can be modeled as a linear integer optimization problem.
(b) [5 pts] Let (N, \mathcal{F}) be a matroid with associated rank function $r(\cdot)$.
$[\mathbf{T} / \mathbf{F}]:$ For all pairs of sets $T_{1}, T_{2} \subset N$ with $\left|T_{1}\right|=\left|T_{2}\right|$, we have $r\left(T_{1}\right)=r\left(T_{2}\right)$.
(c) [5 pts] Let $x^{*} \in \mathbb{R}^{n}$ be an optimal solution to $Z_{L P}=\min _{A y \leq b} c^{T} y$ and let $x \in \mathbb{Z}^{n}: A x \leq b$ be a solution obtained from x^{*} by a randomized rounding procedure. Suppose $E\left[c^{\prime} x\right]=c^{\prime} x^{*}=Z_{L P}$.
$[\mathbf{T} / \mathbf{F}]:$ It is possible that $E\left[\left(c^{\prime} x-Z_{L P}\right)^{2}\right]>0$.
(d) [5 pts] Let $P=\left\{x \in \mathbb{R}^{7} \mid A x=b, f^{\prime} x \geq d\right\}$ be a polyhderon with $\operatorname{rank}(A)=3$, in which the inequality $f^{\prime} x \geq d$ defines a face of dimension 3 .
$[\mathbf{T} / \mathbf{F}]:$ The inequality $f^{\prime} x \geq d$ can be deleted from P.
(e) [8 pts] Let $N=\{1, \ldots, n\}$. Consider the knapsack polytope $P_{K N}=\operatorname{conv}\left\{x \in\{0,1\}^{n}: \sum_{i=1}^{n} w_{i} x_{i} \leq b\right\}$.

Suppose we identify a minimal cover $C \subseteq N$ with the following properties:

- $\sum_{i \in C} w_{i}>b$
- $\forall j \in C: \sum_{i \in C: i \neq j} w_{i} \leq b$
- $\sum_{i \in C} w_{i}+\max \left\{w_{j}: j \in N \backslash C\right\}-\max \left\{w_{i}: i \in C\right\} \leq b$
$[\mathbf{T} / \mathbf{F}]:$ The inequality $\sum_{i \in C} x_{i} \leq|C|-1$ defines a facet of $P_{K N}$.
(f) $[6 \mathrm{pts}]$ Let $\left\{f_{0}, f_{1}, \ldots, f_{m}\right\}$ be nonlinear functions. Consider the binary nonlinear optimization problem:
$Z_{B P}=\min \sum_{j=1}^{n} f_{0}\left(x_{j}\right)$
subject to

$$
\sum_{i=1}^{n} f_{j}\left(x_{i}\right) \leq b_{j}, j=1, \ldots, m
$$

$[\mathbf{T} / \mathbf{F}]:$ The problem can be reformulated as a linear integer optimization problem.
(g) [5 pts] Suppose we carry out the lift and project method in the variables $\left\{x_{1}, \ldots, x_{k}\right\}$.
$[\mathbf{T} / \mathbf{F}]:$ The order of the variables in which we perform the lift and project method may lead to different polyhedra.
(h) $[6 \mathrm{pts}]$ Consider the robust optimization problem:

$$
\begin{aligned}
& Z_{R}=\max c^{\prime} x \\
& \text { subject to } \\
& a^{\prime} x \leq b \quad \forall a \in\{0,1\}^{n}: w^{\prime} a \leq B \\
& x \geq 0
\end{aligned}
$$

[T/F]:Calculating Z_{R} is NP-hard.
(i) [5 pts] Referring to (h), let $w=e$ (vector of 1's).
$[\mathbf{T} / \mathbf{F}]$: Calculating Z_{R} is polynomially solvable.

Solution:

(a) True. The absolute value function is piecewise linear.
(b) False. Consider a bi-partition matroid, a set T_{1} containing one element in each partition and a set T_{2} containing two elements in one partition. Then $\left|T_{1}\right|=\left|T_{2}\right|=2$ but $r\left(T_{1}\right)=2 \neq 1=r\left(T_{2}\right)$.
(c) False. Since each integral x generated satisfies $A x \leq b$ and x^{*} minimizes $c^{T} x$ over this set, we must have $P\left(c^{T} x<c^{T} x^{*}\right)=0$. Since we have $E\left[c^{T} x\right]=c^{T} x^{*}$, we must then also have $P\left(c^{T} x>c^{T} x^{*}\right)=0$. The result follows.
(d) False. $\operatorname{dim}(P) \geq \operatorname{dim}(F)=3 \neq 0$ so $P \neq \emptyset$. We have $\operatorname{dim}(P)=n-\operatorname{rank}(A)=4$, thus F is a facet and $f x \geq g$ therefore cannot be dropped.
(e) True. We apply theorem A. 2 from the book. Let $f x \leq g$ represent the constraint $\sum_{i \in C} x_{i} \leq|C|-1$ and F be the face it induces. Let $h x=d$ by any equality the holds for all $x \in F$. For any pair of elements $i, j \in C$ consider the solutions x^{i} and x^{j} which select all elements in $C \backslash\{i\}$ and $C \backslash\{j\}$ respectively and no elements from $N \backslash C$. We have $x^{i}, x^{j} \in F$ by the second property and thus $h x^{i}=h x^{j} \Rightarrow h_{j}=h_{i}$. Next pick $i=\operatorname{argmax}\left\{w_{i}: i \in C\right\}$, for each element $k \in N \backslash C$ consider the solution $x^{i, k}$ which selects the elements in $\{k\} \cup C \backslash\{i\}$ and the solution $x^{i} \in F$ constructed as before. We have $x^{i, k} \in F$ by the third property and thus $h x^{i}=h x^{i, k} \Rightarrow 0=h_{k}$. Thus $h x=\alpha f$ for some α.
(f) True. This can be accomplished by the following:
$\min \sum_{i=1}^{n} y_{i, 0}$
subject to

$$
\begin{array}{rlrl}
y_{i, j} & \geq f_{j}(1) x_{i} & i=1, \ldots, n, j=0, \ldots, n \\
y_{i, j} & \geq f_{j}(0)\left(1-x_{i}\right) & i=1, \ldots n, j=0, \ldots, n \\
\sum_{i=1}^{n} y_{i, j} & \leq b_{j}, j=1, \ldots, m &
\end{array}
$$

$\frac{x \in\{0,1\}^{n}}{\text { or by replacing } f_{j}\left(x_{i}\right)=\left(f_{j}(1)-f_{j}(0)\right) x_{i}+f_{j}(0) \text { in the original formulation. }}$
(g) False. Any order provides the set $\operatorname{conv}\left(P \bigcap_{i=1}^{k}\left\{x_{k} \in\{0,1\}\right\}\right)$.
(h) True. By the equivalence of separation and optimization, the separation problem has the same complexity as calculating Z_{R}. But solving the separation problem is equivalent to solving KNAPSACK.
(i) True. The uncertainty set is now integral (since w is TU), so the separation problem is an LP and is thus polynomially solvable.

Problem (2: A directed cut formulation of MST-25 pts) Given a undirected graph $G=(V, E)$, with $|V|=n$ and $|E|=m$, form a directed graph $D=(V, A)$ by replacing each edge $\{i, j\}$ in E by $\operatorname{arcs}(i, j)$ and (j, i) in A. We select a node $r \in V$ as the root node. Let $y_{i j}=1$ if the tree contains arc (i, j) when we root the tree at node r (in other words the solution will be a tree with directed edges away from the root). Let $\delta^{+}(S)$ be the set
of arcs going out of S. Define:

$$
\begin{aligned}
P_{d c u t}= & \left\{x \in \mathbb{R}^{m}: 0 \leq x_{e} \leq 1, x_{e}=y_{i j}+y_{j i}, \forall e \in E\right. \\
& \left.\sum_{e \in A} y_{e}=n-1, \sum_{e \in \delta^{+}(S)} y_{e} \geq 1, r \in S, \forall S \subset V, y_{e} \geq 0\right\} \\
P_{s u b}= & \left\{x \in \mathbb{R}^{m}: 0 \leq x_{e} \leq 1, \forall e \in E, \sum_{e \in E} x_{e}=n-1\right. \\
& \left.\sum_{e \in E(S)} x_{e} \leq|S|-1, \forall S \subset V, S \neq \emptyset, V\right\}
\end{aligned}
$$

Prove $P_{d c u t}=P_{s u b}$.
Solution: For $x \in P_{s u b}$ an extreme point, we construct a solution y by assigning positive flow emanating from the root node with value x_{e}; in other words we assign $y_{i j}=x_{e}$ with $e=(i, j)$ if (i, j) emanates from r. Such an assignment exists since $P_{\text {sub }}$ is integral and has no cycles. For $r \in S$ we have $\sum_{e \in E(S)} x_{e} \leq|S|-1 \Rightarrow 1 \leq \sum_{e \in \delta(S)} x_{e}=\sum_{e \in \delta^{+}(S)} y_{e}$. So such a solution $(x, y) \in P_{d c u t}$ so $P_{\text {sub }} \subseteq P_{d c u t}$.
For $x \in P_{d c u t}, \exists y: \sum_{x \in E} x_{e}=\sum_{e \in A} y_{e}=n-1$ and $\sum_{e \in \delta^{+}(S)} y_{e} \geq 1$ for $S \ni r$. For each $i \in S \backslash\{r\}$ we have $\sum_{e \in \delta^{-}(\{i\})} y_{e} \geq 1$; since $\sum_{e \in A} y_{e}=n-1$ this then implies that $\sum_{e \in \delta^{-}(\{i\})} y_{e}=1$ and $\sum_{e \in \delta^{-}(\{r\})} y_{e}=0$. For any $S \mid r \in S$ we then have $\sum_{x_{e} \in E(S)} x_{e} \leq \sum_{v \in S} \sum_{e \in \delta^{-}(\{v\})} y_{e} \leq|S|-1$.
For any $S \mid r \notin S$ we have $\sum_{x_{e} \in E(S)} x_{e} \leq \sum_{v \in S} \sum_{e \in \delta^{-}(\{v\})} y_{e}-\sum_{e \in \delta^{+}(V \backslash S)} y_{e} \leq|S|-1$. So $x \in P_{d c u t}$ and thus $P_{s u b} \supseteq P_{d c u t}$.

Problem (3: Comparison of relaxations for the TSP-25 pts) Given an undirected graph $G=(V, E)$, consider the following two formulations of the TSP:

Let $Z_{I P}$ be the common optimal cost of the two formulations. Let Z_{1}, Z_{2} be the optimal cost of the linear relaxation of the two formulations respectively. Let $Z_{D 1}, Z_{D 2}$ be the values of the Lagrangian duals if we relax the constraints $\sum_{e \in \delta(\{i\})} x_{e}=2$ for all $i \neq 1$ in the two formulations. Let $Z_{M S T}$ be the cost of the minimum
spanning tree with respect to the edge costs c_{e}. Order the values $Z_{1}, Z_{2}, Z_{I P}, Z_{D 1}, Z_{D 2}, Z_{M S T}$.
Solution: We know that $Z_{1} \leq Z_{D 1} \leq Z_{I P}$ and $Z_{2} \leq Z_{D 2} \leq Z_{I P}$. We also know that the cut-set and subtour-elimination polyhedra are equivalent so $Z_{1}=Z_{2}$. From example 4.5 in the book, we know that if we add the redundant (in the original problem) constraint $\sum_{e \in E(V \backslash\{1\})}=|V|-2$ to the problem $Z_{D 2}$ to obtain a problem Z_{D} we have $Z_{D}=Z_{2}$, but without this extra constraint we have $Z_{D 2} \leq Z_{D}$, so $Z_{D 2}=Z_{2}$. Examples such as the one in HW1 solutions show that the polyhedron for $Z_{D 1}$ is not necessarily integral. $Z_{M S T} \leq Z_{2}$ since any feasible point for Z_{2} can be transformed into a feasible point for $Z_{M S T}$ with no greater cost. Thus we have:

$$
Z_{M S T} \leq Z_{1}=Z_{2}=Z_{D 2} \leq Z_{D 1} \leq Z_{I P}
$$

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

