15.083: Integer Programming and Combinatorial Optimization Midterm Exam

10/26/2009

Problem (1) (50 pts) Indicate whether the following italicized statements are true or false. Provide a supporting argument and/or short proof.

- (a) [5 pts] Consider the problem max $\sum_{j=1}^{n} c_j |x_j|$ subject to $\sum_{j=1}^{n} a_j |x_j| \le b$. [**T**/**F**]: The problem can be modeled as a linear integer optimization problem.
- (b) [5 pts] Let (N, \mathcal{F}) be a matroid with associated rank function $r(\cdot)$. [**T**/**F**]: For all pairs of sets $T_1, T_2 \subset N$ with $|T_1| = |T_2|$, we have $r(T_1) = r(T_2)$.
- (c) [5 pts] Let $x^* \in \mathbb{R}^n$ be an optimal solution to $Z_{LP} = \min_{Ay \leq b} c^T y$ and let $x \in \mathbb{Z}^n : Ax \leq b$ be a solution obtained from x^* by a randomized rounding procedure. Suppose $E[c'x] = c'x^* = Z_{LP}$. $[\mathbf{T}/\mathbf{F}]: It is possible that E\left[(c'x - Z_{LP})^2\right] > 0.$
- (d) [5 pts] Let P = {x ∈ ℝ⁷ | Ax = b, f'x ≥ d} be a polyhderon with rank(A) = 3, in which the inequality f'x ≥ d defines a face of dimension 3.
 [T/F]: The inequality f'x ≥ d can be deleted from P.
- (e) [8 pts] Let $N = \{1, ..., n\}$. Consider the knapsack polytope $P_{KN} = conv\{x \in \{0, 1\}^n : \sum_{i=1}^n w_i x_i \leq b\}$. Suppose we identify a minimal cover $C \subseteq N$ with the following properties:

•
$$\sum_{i \in C} w_i > b$$

• $\forall j \in C : \sum_{i \in C: i \neq j} w_i \le b$
•
$$\sum_{i \in C} w_i + \max\{w_j : j \in N \setminus C\} - \max\{w_i : i \in C\} \le b$$

 $[\mathbf{T}/\mathbf{F}]$: The inequality $\sum_{i \in C} x_i \leq |C| - 1$ defines a facet of P_{KN} .

(f) <u>[6 pts] Let $\{f_0, f_1, ..., f_m\}$ be nonlinear functions</u>. Consider the binary nonlinear optimization problem:

 $Z_{BP} = \min \sum_{j=1}^{n} f_0(x_j)$ subject to $\sum_{i=1}^{n} f_j(x_i) \leq b_j, \ j = 1, \dots, m$ $x \in \{0, 1\}^n$ [**T**/**F**]: The problem can be reformulated as a linear integer optimization problem.

(g) [5 pts] Suppose we carry out the lift and project method in the variables $\{x_1, ..., x_k\}$. [**T**/**F**]: The order of the variables in which we perform the lift and project method may lead to different polyhedra. (h) [6 pts] Consider the robust optimization problem:

 $\begin{bmatrix} Z_R = \max c'x \\ \text{subject to} \\ a'x \leq b \quad \forall a \in \{0,1\}^n : w'a \leq B \\ x \geq 0 \\ \end{bmatrix}$ $[\mathbf{T/F}]: Calculating Z_R \text{ is NP-hard.}$

(i) [5 pts] Referring to (h), let w = e (vector of 1's). [**T**/**F**]:*Calculating* Z_R *is polynomially solvable.*

SOLUTION:

- (a) True. The absolute value function is piecewise linear.
- (b) False. Consider a bi-partition matroid, a set T_1 containing one element in each partition and a set T_2 containing two elements in one partition. Then $|T_1| = |T_2| = 2$ but $r(T_1) = 2 \neq 1 = r(T_2)$.
- (c) False. Since each integral x generated satisfies $Ax \leq b$ and x^* minimizes $c^T x$ over this set, we must have $P(c^T x < c^T x^*) = 0$. Since we have $E[c^T x] = c^T x^*$, we must then also have $P(c^T x > c^T x^*) = 0$. The result follows.
- (d) False. $dim(P) \ge dim(F) = 3 \ne 0$ so $P \ne \emptyset$. We have dim(P) = n rank(A) = 4, thus F is a facet and $fx \ge g$ therefore cannot be dropped.
- (e) True. We apply theorem A.2 from the book. Let $fx \leq g$ represent the constraint $\sum_{i \in C} x_i \leq |C| 1$ and F be

the face it induces. Let hx = d by any equality the holds for all $x \in F$. For any pair of elements $i, j \in C$ consider the solutions x^i and x^j which select all elements in $C \setminus \{i\}$ and $C \setminus \{j\}$ respectively and no elements from $N \setminus C$. We have $x^i, x^j \in F$ by the second property and thus $hx^i = hx^j \Rightarrow h_j = h_i$. Next pick $i = argmax\{w_i : i \in C\}$, for each element $k \in N \setminus C$ consider the solution $x^{i,k}$ which selects the elements in $\{k\} \cup C \setminus \{i\}$ and the solution $x^i \in F$ constructed as before. We have $x^{i,k} \in F$ by the third property and thus $hx^i = hx^{i,k} \Rightarrow 0 = h_k$. Thus $hx = \alpha f$ for some α .

(f) True. This can be accomplished by the following:

 $\begin{array}{l} \min \sum_{i=1}^{n} y_{i,0} \\ \text{subject to} \\ y_{i,j} \geq f_j(1)x_i & i = 1, \dots, n, j = 0, \dots, n \\ y_{i,j} \geq f_j(0)(1 - x_i) & i = 1, \dots, n, j = 0, \dots, n \\ \sum_{i=1}^{n} y_{i,j} \leq b_j, \ j = 1, \dots, m \\ x \in \{0, 1\}^n \\ \text{or by replacing } f_j(x_i) = (f_j(1) - f_j(0))x_i + f_j(0) \text{ in the original formulation.} \end{array}$

- (g) False. Any order provides the set $conv(P \bigcap_{i=1}^{k} \{x_k \in \{0,1\}\})$.
- (h) True. By the equivalence of separation and optimization, the separation problem has the same complexity as calculating Z_R . But solving the separation problem is equivalent to solving KNAPSACK.
- (i) True. The uncertainty set is now integral (since w is TU), so the separation problem is an LP and is thus polynomially solvable.

Problem (2: A directed cut formulation of MST-25 pts) Given a undirected graph G = (V, E), with |V| = n and |E| = m, form a directed graph D = (V, A) by replacing each edge $\{i, j\}$ in E by arcs (i, j) and (j, i) in A. We select a node $r \in V$ as the root node. Let $y_{ij} = 1$ if the tree contains arc (i, j) when we root the tree at node r (in other words the solution will be a tree with directed edges away from the root). Let $\delta^+(S)$ be the set

of arcs going out of S. Define:

$$P_{dcut} = \left\{ x \in \mathbb{R}^m : 0 \le x_e \le 1, x_e = y_{ij} + y_{ji}, \forall e \in E, \right.$$
$$\sum_{e \in A} y_e = n - 1, \sum_{e \in \delta^+(S)} y_e \ge 1, r \in S, \forall S \subset V, y_e \ge 0 \right\}$$
$$P_{sub} = \left\{ x \in \mathbb{R}^m : 0 \le x_e \le 1, \forall e \in E, \sum_{e \in E} x_e = n - 1 \right.$$
$$\sum_{e \in E(S)} x_e \le |S| - 1, \forall S \subset V, S \ne \emptyset, V \right\}$$

Prove $P_{dcut} = P_{sub}$.

SOLUTION: For $x \in P_{sub}$ an extreme point, we construct a solution y by assigning positive flow emanating from the root node with value x_e ; in other words we assign $y_{ij} = x_e$ with e = (i, j) if (i, j) emanates from r. Such an assignment exists since P_{sub} is integral and has no cycles. For $r \in S$ we have

$$\begin{split} \sum_{e \in E(S)} x_e &\leq |S| - 1 \Rightarrow 1 \leq \sum_{e \in \delta(S)} x_e = \sum_{e \in \delta^+(S)} y_e. \text{ So such a solution } (x, y) \in P_{dcut} \text{ so } P_{sub} \subseteq P_{dcut}. \\ \text{For } x \in P_{dcut}, \exists y : \sum_{x \in E} x_e = \sum_{e \in A} y_e = n - 1 \text{ and } \sum_{e \in \delta^+(S)} y_e \geq 1 \text{ for } S \ni r. \text{ For each } i \in S \setminus \{r\} \text{ we have } \\ \sum_{e \in \delta^-(\{i\})} y_e \geq 1; \text{ since } \sum_{e \in A} y_e = n - 1 \text{ this then implies that } \sum_{e \in \delta^-(\{i\})} y_e = 1 \text{ and } \sum_{e \in \delta^-(\{r\})} y_e = 0. \\ \text{For any } S|r \in S \text{ we then have } \sum_{x_e \in E(S)} x_e \leq \sum_{v \in S} \sum_{e \in \delta^-(\{v\})} y_e \leq |S| - 1. \\ \text{For any } S|r \notin S \text{ we have } \sum_{x_e \in E(S)} x_e \leq \sum_{v \in S} \sum_{e \in \delta^-(\{v\})} y_e - \sum_{e \in \delta^+(V \setminus S)} y_e \leq |S| - 1. \\ \text{So } x \in P_{dcut} \text{ and thus } P_{sub} \supseteq P_{dcut}. \end{split}$$

Problem (3: Comparison of relaxations for the TSP-25 pts) Given an undirected graph G = (V, E), consider the following two formulations of the TSP:

$$\begin{array}{rcl} \min \sum_{e \in E} c_e x_e \\ \text{subject to} \\ 1) & \sum_{e \in \delta(\{i\})} x_e &= 2 & \forall i \in V \\ & \sum_{e \in \delta(S)} x_e &\geq 2 & \forall S \subset V, S \neq \emptyset, V \\ & x_e &\in \{0,1\} \quad \forall e \in E \end{array} \\ \\ 2) & \min \sum_{e \in E} c_e x_e \\ \text{subject to} \\ & \sum_{e \in \delta(\{i\})} x_e &= 2 & \forall i \in V \\ & \sum_{e \in \delta(\{i\})} x_e &\leq |S| - 1 \quad \forall S \subset V, S \neq \emptyset, V \\ & \sum_{e \in E(S)} x_e &\leq |S| - 1 \quad \forall S \subset V, S \neq \emptyset, V \\ & x_e &\in \{0,1\} \quad \forall e \in E \end{array}$$

Let Z_{IP} be the common optimal cost of the two formulations. Let Z_1, Z_2 be the optimal cost of the linear relaxation of the two formulations respectively. Let Z_{D1}, Z_{D2} be the values of the Lagrangian duals if we relax the constraints $\sum_{e \in \delta(\{i\})} x_e = 2$ for all $i \neq 1$ in the two formulations. Let Z_{MST} be the cost of the minimum

spanning tree with respect to the edge costs c_e . Order the values $Z_1, Z_2, Z_{IP}, Z_{D1}, Z_{D2}, Z_{MST}$.

SOLUTION: We know that $Z_1 \leq Z_{D1} \leq Z_{IP}$ and $Z_2 \leq Z_{D2} \leq Z_{IP}$. We also know that the cut-set and subtour-elimination polyhedra are equivalent so $Z_1 = Z_2$. From example 4.5 in the book, we know that if we add the redundant (in the original problem) constraint $\sum_{e \in E(V \setminus \{1\})} = |V| - 2$ to the problem Z_{D2} to obtain a problem Z_D we have $Z_D = Z_2$, but without this extra constraint we have $Z_{D2} \leq Z_D$, so $Z_{D2} = Z_2$. Examples such as the one in HW1 solutions show that the polyhedron for Z_{D1} is not necessarily integral. $Z_{MST} \leq Z_2$ since any feasible point for Z_2 can be transformed into a feasible point for Z_{MST} with no greater cost. Thus we have:

$$Z_{MST} \le Z_1 = Z_2 = Z_{D2} \le Z_{D1} \le Z_{IP}$$

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.