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15.083: Integer Programming and Combinatorial Optimization

Midterm Exam


10/26/2009


Problem (1) (50 pts) Indicate whether the following italicized statements are true or false. Provide a 
supporting argument and/or short proof. 

n n

(a) [5 pts] Consider the problem max cj |xj | subject to aj |xj | ≤ b. 
j=1 j=1 

[T/F]:The problem can be modeled as a linear integer optimization problem. 

(b) [5 pts] Let (N, F) be a matroid with associated rank function r( ).·
[T/F]:For all pairs of sets T1, T2 ⊂ N with |T1| = |T2|, we have r(T1) = r(T2). 

(c) [5 pts] Let x∗ ∈ Rn be an optimal solution to ZLP = min c T y and let x ∈ Zn : Ax ≤ b be a solution 
Ay≤b


obtained from x∗ by a randomized rounding procedure. Suppose E[c�x] = c�x∗ = ZLP .

[T/F]:It is possible that E (c�x − ZLP )

2 
> 0. 

(d) [5 pts] Let P = {x ∈ R7 | Ax = b, f �x ≥ d} be a polyhderon with rank(A) = 3, in which the inequality 
f �x ≥ d defines a face of dimension 3. 
[T/F]:The inequality f �x ≥ d can be deleted from P . 

n

(e) [8 pts] Let N = {1, ..., n}. Consider the knapsack polytope PKN = conv{x ∈ {0, 1}n : wixi ≤ b}. 
i=1 

Suppose we identify a minimal cover C ⊆ N with the following properties: 

wi > b • 
i∈C 

• ∀j ∈ C : wi ≤ b 
=ji∈C:i �

wi + max{wj : j ∈ N\C} − max{wi : i ∈ C} ≤ b• 
i∈C 

[T/F]:The inequality |C| − 1 defines a facet of PKN .xi ≤

i∈C


(f) [6 pts] Let {f0, f1, ..., fm} be nonlinear functions. Consider the binary nonlinear optimization problem: 
n

ZBP = min f0(xj ) 
j=1 

subject to 
n

fj (xi) ≤ bj , j = 1, . . . ,m 
i=1 

nx ∈ {0, 1}
[T/F]:The problem can be reformulated as a linear integer optimization problem. 

(g) [5 pts] Suppose we carry out the lift and project method in the variables {x1, ..., xk}. 
[T/F]:The order of the variables in which we perform the lift and project method may lead to different 
polyhedra. 
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(h) [6 pts] Consider the robust optimization problem: 
ZR = max c�x 
subject to 
a�x ≤ b ∀a ∈ {0, 1}n : w�a ≤ B 

x 0≥
[T/F]:Calculating ZR is NP-hard. 

(i) [5 pts] Referring to (h), let w = e (vector of 1’s). 
[T/F]:Calculating ZR is polynomially solvable. 

Solution: 

(a) True. The absolute value function is piecewise linear. 

(b) False. Consider a bi-partition matroid, a set T1 containing one element in each partition and a set T2 

containing two elements in one partition. Then |T1| = |T2| = 2 but r(T1) = 2 = 1 = � r(T2). 

(c) False. Since each integral x generated satisfies Ax ≤ b and x∗ minimizes cT x over this set, we must have 
P (cT x < cT x∗) = 0. Since we have E[cT x] = cT x∗, we must then also have P (cT x > cT x∗) = 0. The result 
follows. 

(d) False.	 dim(P ) ≥ dim(F ) = 3 = 0 so � P =� ∅. We have dim(P ) = n − rank(A) = 4, thus F is a facet and 
fx ≥ g therefore cannot be dropped. 

(e) True. We apply theorem A.2 from the book. Let fx ≤ g represent the constraint xi ≤ |C| − 1 and F be 
i∈C 

the face it induces. Let hx = d by any equality the holds for all x ∈ F . For any pair of elements i, j ∈ C 
consider the solutions xi and xj which select all elements in C\{i} and C\{j} respectively and no elements 
from N\C. We have xi, xj ∈ F by the second property and thus hxi = hxj ⇒ hj = hi. Next pick 
i = argmax{wi : i ∈ C}, for each element k ∈ N\C consider the solution xi,k which selects the elements in 
{k} ∪ C\{i} and the solution xi ∈ F constructed as before. We have xi,k ∈ F by the third property and 
thus hxi = hxi,k 0 = hk. Thus hx = αf for some α.⇒ 

(f) True. This can be accomplished by the following: 
n

min yi,0 

i=1 
subject to 

yi,j ≥ fj (1)xi i = 1, ..., n, j = 0, ..., n 

n
yi,j ≥ fj (0)(1 − xi) i = 1, ...n, j = 0, ..., n 

yi,j ≤ bj , j = 1, . . . ,m

i=1


x ∈ {0, 1}n 

or by replacing fj (xi) = (fj (1) − fj (0))xi + fj (0) in the original formulation. �k(g) False. Any order provides the set conv(P i=1{xk ∈ {0, 1}}). 

(h) True. By the equivalence of separation and optimization, the separation problem has the same complexity 
as calculating ZR. But solving the separation problem is equivalent to solving KNAPSACK. 

(i) True. The uncertainty set is now integral (since w is TU), so the separation problem is an LP and is thus 
polynomially solvable. 

Problem (2: A directed cut formulation of MST-25 pts) Given a undirected graph G = (V,E), with 
|V | = n and |E| = m, form a directed graph D = (V,A) by replacing each edge {i, j} in E by arcs (i, j) and (j, i) 
in A. We select a node r ∈ V as the root node. Let yij = 1 if the tree contains arc (i, j) when we root the tree at 
node r (in other words the solution will be a tree with directed edges away from the root). Let δ+(S) be the set 
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of arcs going out of S. Define: 

Pdcut = x ∈ Rm : 0 ≤ xe ≤ 1, xe = yij + yji, ∀e ∈ E, 

ye = n − 1, ye ≥ 1, r ∈ S, ∀S ⊂ V, ye ≥ 0 
e∈A e∈δ+(S) 

Psub = x ∈ Rm : 0 ≤ xe ≤ 1, ∀e ∈ E, xe = n − 1 
e∈E 

xe ≤ |S| − 1, ∀S ⊂ V, S =� ∅, V 
e∈E(S) 

Prove Pdcut = Psub. 

Solution: For x ∈ Psub an extreme point, we construct a solution y by assigning positive flow emanating from 
the root node with value xe; in other words we assign yij = xe with e = (i, j) if (i, j) emanates from r. Such an 
assignment exists since Psub is integral and has no cycles. For r ∈ S we have 

e∈E(S) xe ≤ |S| − 1 ⇒ 1 ≤ xe = ye. So such a solution (x, y) ∈ Pdcut so Psub ⊆ Pdcut. 
e∈δ(S) e∈δ+ (S) 

For x ∈ Pdcut, ∃y : x∈E xe = = n − 1 and e∈δ+(S) ye ≥ 1 for S � r. For each i ∈ S\{r} we have � � e∈A ye � � 
e∈δ−({i}) ye ≥ 1; since e∈A ye = n − 1 this then implies that e∈δ−({i}) ye = 1 and e∈δ− ({r}) ye = 0. 

For any S|r ∈ S we then have xe ≤ ye ≤ |S| − 1. 
xe∈E(S) v∈S e∈δ−({v}) 

For any S|r �∈ S we have xe ≤ ye − ye ≤ |S| − 1. So x ∈ Pdcut and thus 
xe∈E(S) v∈S e∈δ−({v}) e∈δ+(V \S) 

Psub ⊇ Pdcut. 

Problem (3: Comparison of relaxations for the TSP-25 pts) Given an undirected graph G = (V,E), 
consider the following two formulations of the TSP: 

min cexe 

e∈E 

subject to

1) xe = 2 ∀i ∈ V 
e∈δ({i}) 

xe ≥ 2 ∀S ⊂ V, S =� ∅, V 
e∈δ(S) � 

xe ∈ {0, 1} ∀e ∈ E


min cexe


e∈E 

subject to

2) xe = 2 ∀i ∈ V 
e∈δ({i}) 

xe ≤ |S| − 1 ∀S ⊂ V, S =� ∅, V 
e∈E(S) 

xe ∈ {0, 1} ∀e ∈ E 
Let ZIP be the common optimal cost of the two formulations. Let Z1, Z2 be the optimal cost of the linear 
relaxation of the two formulations respectively. Let ZD1, ZD2 be the values of the Lagrangian duals if we relax 
the constraints xe = 2 for all i = 1 in the two formulations. Let ZMST be the cost of the minimum 

e∈δ({i}) 

spanning tree with respect to the edge costs ce. Order the values Z1, Z2, ZIP , ZD1, ZD2, ZMST . 

Solution: We know that Z1 ≤ ZD1 ≤ ZIP and Z2 ≤ ZD2 ≤ ZIP . We also know that the cut-set and 
subtour-elimination polyhedra are equivalent so Z1 = Z2. From example 4.5 in the book, we know that if we 
add the redundant (in the original problem) constraint e∈E(V \{1}) = |V | − 2 to the problem ZD2 to obtain a 
problem ZD we have ZD = Z2, but without this extra constraint we have ZD2 ≤ ZD, so ZD2 = Z2. Examples 
such as the one in HW1 solutions show that the polyhedron for ZD1 is not necessarily integral. ZMST ≤ Z2 

since any feasible point for Z2 can be transformed into a feasible point for ZMST with no greater cost. Thus we 
have: 

ZMST ≤ Z1 = Z2 = ZD2 ≤ ZD1 ≤ ZIP 
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