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15.083: Integer Programming and Combinatorial Optimization 
Problem Set 5 Solutions 

Due 11/18/2009 

Problem (1) 

(a) We need only prove (iii) if and only if each non-empty set has a smallest element. 
If (iii), then for any nonempty subset S, construct a sequence as follows: pick an arbitrary element of S and 
call it α(1), then keep adding elements from S to the sequence so that α(k + 1) � α(k) if there were not a 
smallest element in S we could repeat this process indefinitely arriving at a strictly decreasing sequence that 
does not terminate. 
If each non-empty set S has a smallest element, then for any strictly decreasing sequence consider the set 
S = {α(k)}. S must have a smallest element and thus the sequence must eventually terminate on this 
smallest element. 

(b) Forall α, β ∈ Zn with α = β, we have α − β = 0 so the check for the leftmost entry being positive is well 
defined and lex is a total ordering. α − β = (α + γ) − (β + γ) so property (ii) holds. Any vector α ∈ Zn can+ 
only be greater than O(|α|∞b ) other vectors with respect to the lex ordering. So any strictly decreasing 
sequence starting with α(1) can have at most |α(1)|1 terms before it terminates. 

(c) Assume � is a monomial ordering. For the sake of contradiction, assume 0 � α for some α ∈ Zn . Then the +

sequence α(k) = kα is a strictly decreasing sequence that does not terminate.

Assume (i),(ii), and for all α ∈ Zn , α � 0. By Dickson’s Lemma, for any A ⊆ Zn we have
+	 + 
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(α + Zn ) = (α(k) + Zn ) for some m. We have β � 0 for any β ∈ Zn . So the smallest element in the + +	 +

α∈A k=1

m

 
 

set (α + Z+) is α; since by Dickson’s Lemma, for any A ⊆ Zn we have (α + Zn ) = (α(k) + Zn ) for n + + +

α∈A k=1 

some m. So the smallest element of A is one of the α(k)’s; thus each set A has a smallest element. 

(d) Let f = α∈A aαxα; g = β∈B bβ x
β . Then f g = α∈A β∈B aαbβxα+β . Let· 

ᾱ = max�{α ∈ A} = multi(f) and β ̄ = max�{β ∈ B} = multi(g). Then by property (ii)

ᾱ + β ̄ = max�{γ ∈ A + B} = multi(f + g).

f + g introduces no new monomials that are not in f or g, though there may be cancelations. Suppose

multi(f + g) � max{multi(f), multi(g)}. Let xγ be the monomial in f + g that achieves multi(f + g).

Then xγ is a monomial in f or g; but multi(f), multi(g) � multi(f + g) arriving at contradiction.


Problem (2) Every monomial ideal is a Groebner basis. If division by the ideal results in zero remainder we 
obviously have ideal membership. Suppose we have ideal membership, but non-zero remainder. Then 
I � f = hi(x)xα(i) + r ⇒ LT (r) ∈< LT (xα(i)) >= I which means that r is divisible by at least one of the α(i) 
arriving at contradiction. 

Problem (3) 

(a) 

(i) Since G is minimal LT (g) = LT (g�) which in turn makes G� minimal 

(ii)	 g� is the remainder on division of G\{g} therefore by the division algorithm, no monomial of g� is 
divisible by LT (G\{g}) 

(iii) An algorithm is simply repeating this process until all elements of G� are reduced. 
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(b) The reduced Groebner basis is < x − 2y − 2w, z + 3w >. Parametrically the family of solutions can be 
described for any s,t as : (x, y, z, w) = (2s − 2t, s, −3t, t) 

Problem (4) The reduced Groebner basis obtained through Maple is

< 40y −13y2 +y3 , −8y +y2 +15x6, 13y −y2 −40+40x5, 5y −y2 +24x4, 13y −y2 −40+40x3, 5y −y2 +24x2, x1 −1 >.

The minimum solution to the cubic equation for y is y∗ = 0, propagating this value through the elimination

ideal gives us an optimal solution of (1, 0, 1, 0, 1, 0).


Problem (5) 

(a) Checking all the vertices, we have an integral polytope:	 {(0, 0), (0, 3), (3, 0), (2, 2)}. The vectors (1, 2) and 
(2, 1) which induce the face (2, 2) are not an integral generating set since they cannot generate (1, 1), so we 
do not have a TDI system. By examining each vertex, we see that adding the constraints 
x1 + x2 ≤ 4,x1 ≤ 3,x2 ≤ 3 gives us a TDI system. 

(b) If we select t to be the least common integer multiple of the determinant of all submatrices B of A, we have 
for any c integral AT y = tc is integral by Cramer’s rule. Thus we have such a TDI representation. Such a 
LCM exists by rationality. 

(c) 

(i) Given an integral solution, reverse the orientation of the arcs with xa = 1. Then the number of arcs 
entering a proper subset are given by: 

(1 − xa) + xa = |δ−(U)| − xa + xa ≥ k 
a∈δ−(U) a∈δ+(U ) a∈δ−(U) a∈δ+(U) 

(ii) Set xa = 1 for all a ∈ A. Constraint (1) then reduces to 2k ≤ |δ+(U)| + |δ−(U)| which is true by 2 
2k-connectedness of G. 

(iii) Consider maximizing	 a caxa over (1) and let zU be the dual variable corresponding to the flow 
constraint for subset U. Amongst all dual optimal solutions, consider the one for which
∅�=U ⊂V z

∗ |U | · | | is minimal. Consider the set F U We claim that F is cross-free U V \U = {U : z∗ > 0}. 
(ie satisfies ∀U, T ∈ F : U ⊆ T or U ⊇ T or U ∩ T = ∅ or U ∪ T = V . Suppose U, T ∈ F is a crossing. 
Then let � = min{zU , zT } > 0. We can then define a new dual solution z̄: 

z̄U	 := z∗ 
U − � 

z̄T := zT 
∗ − � 

¯ := z∗ + �zU∩T U∩T 

z̄U∪T := z∗ 
U∪T + � 

and set all other components z̄S := zS 
∗ . z̄ is still dual feasible and


( δ−(U) − k) + ( δ−(T ) − k) ≥ ( δ−(U ∪ T ) − k) + ( δ−(U ∩ T ) − k) so z̄ is dual optimal.

Furthermore, ∅�=U⊂V z̄U |U | · |V \U | < ∅�=U ⊂V U |U | · |V \U |z∗ arriving at contradiction. Therefore the 
basis formed by the active dual constraints for the dual optimum, z̄ correspond to a cross-free family 
F and in turn the basis matrix is totally unimodular. Thus for integral c, z̄ is an optimal integer dual 
solution. Hence (1) is TDI. 
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