15.083: Integer Programming and Combinatorial Optimization
Problem Set 5 Solutions

Due 11/18/2009

Problem (1)

(a)

We need only prove (#47) if and only if each non-empty set has a smallest element.

If (7i7), then for any nonempty subset S, construct a sequence as follows: pick an arbitrary element of S and
call it (1), then keep adding elements from S to the sequence so that a(k + 1) < (k) if there were not a
smallest element in S we could repeat this process indefinitely arriving at a strictly decreasing sequence that
does not terminate.

If each non-empty set S has a smallest element, then for any strictly decreasing sequence consider the set

S ={a(k)}. S must have a smallest element and thus the sequence must eventually terminate on this
smallest element.

Forall o, 3 € Z, with a # 3, we have oo — 3 # 0 so the check for the leftmost entry being positive is well
defined and lex is a total ordering. o — 3 = (a + ) — (8 + ) so property (ii) holds. Any vector € Z'} can
only be greater than O(|a|% ) other vectors with respect to the lex ordering. So any strictly decreasing
sequence starting with (1) can have at most |a(1)|; terms before it terminates.

Assume < is a monomial ordering. For the sake of contradiction, assume 0 = « for some o € Z'}. Then the
sequence (k) = ka is a strictly decreasing sequence that does not terminate.

Assume (i),(ii), and for all o € Z7}, a = 0. By Dickson’s Lemma, for any A C Z} we have
m

U (a+2Z7) = U (a(k) +Z7) for some m. We have = 0 for any 3 € Z'}. So the smallest element in the

a€cA k=1
m

set (o + Z}) is «; since by Dickson’s Lemma, for any A C Z" we have U (a+7Z7Y) = U (a(k) +Z7) for
acA k=1
some m. So the smallest element of A is one of the a(k)’s; thus each set A has a smallest element.

Let f = ZaeA aqT%; g = ZBEB bgm?. Then f-g= ZozEA Z,BEB aabBrtP. Let

a =max, {a € A} = multi(f) and § = max, {8 € B} = multi(g). Then by property (ii)

&+ 3 =max, {y € A+ B} = multi(f + g).

f + g introduces no new monomials that are not in f or g, though there may be cancelations. Suppose
multi(f + g) = max{multi(f), multi(g)}. Let 7 be the monomial in f + g that achieves multi(f + g).
Then z7 is a monomial in f or g; but multi(f), multi(g) < multi(f + g) arriving at contradiction.

Problem (2) Every monomial ideal is a Groebner basis. If division by the ideal results in zero remainder we
obviously have ideal membership. Suppose we have ideal membership, but non-zero remainder. Then

I3 f =3 hi(x)z*?) +r = LT(r) e< LT(2*?) >= I which means that 1 is divisible by at least one of the a(i)
arriving at contradiction.

Problem (3)

(a)

(i) Since G is minimal LT (g) = LT (¢’") which in turn makes G’ minimal

(ii) ¢’ is the remainder on division of G\{g} therefore by the division algorithm, no monomial of ¢’ is
divisible by LT(G\{g})

(iii) An algorithm is simply repeating this process until all elements of G’ are reduced.



(b) The reduced Groebner basis is < z — 2y — 2w, z + 3w >. Parametrically the family of solutions can be
described for any s;t as : (z,y, z,w) = (2s — 2t, s, —3t,t)

Problem (4) The reduced Groebner basis obtained through Maple is

< 40y —13y2 +y3, —8y+y>+ 1536, 13y —y? —40+40z5, 5y —y* + 2424, 13y — y? — 40+ 4023, 5y — y? +24w9, 1 — 1 >.
The minimum solution to the cubic equation for y is y* = 0, propagating this value through the elimination
ideal gives us an optimal solution of (1,0,1,0,1,0).

Problem (5)

(a) Checking all the vertices, we have an integral polytope: {(0,0), (0,3),(3,0),(2,2)}. The vectors (1,2) and
(2,1) which induce the face (2,2) are not an integral generating set since they cannot generate (1,1), so we
do not have a TDI system. By examining each vertex, we see that adding the constraints
r1+ 22 < 4,21 < 3,29 < 3 gives us a TDI system.

(b) If we select t to be the least common integer multiple of the determinant of all submatrices B of A, we have
for any c integral ATy = tc is integral by Cramer’s rule. Thus we have such a TDI representation. Such a
LCM exists by rationality.

()

(i) Given an integral solution, reverse the orientation of the arcs with x, = 1. Then the number of arcs
entering a proper subset are given by:

S o-z)t Y w =l @)= Y wt > wmzk

acd—(U) a€dt(U) acé—(U) a€dt(U)

(ii) Set z, = 1 for all a € A. Constraint (1) then reduces to 2k < |6+ (U)| + [6~(U)| which is true by
2k-connectedness of G.

(ili) Consider maximizing ) c,x, over (1) and let 2y be the dual variable corresponding to the flow
constraint for subset U. Amongst all dual optimal solutions, consider the one for which
> ozvcy 20|UL - [VAU] is minimal. Consider the set 7 = {U : z;; > 0}. We claim that F is cross-free
(ie satisfies VU, T € F: UCT or U2T or UNT =0 or UUT = V. Suppose U, T € F is a crossing.
Then let € = min{zy, zr} > 0. We can then define a new dual solution Z:

Zy = 2 —€
Zr = zp—¢€
_ .
ZunTt ‘= Zynr tE€
— *
zZuur = Zpur tE€

and set all other components zZg := z%. Z is still dual feasible and

(0= =k)+ (6~ (D)|—=k)=> (|6 (UUD)| —k)+ (|6 (UNT)| — k) so z is dual optimal.
Furthermore, > oy ZulU[ - [VAU| < 3y ,pcv 201U - [VAU| arriving at contradiction. Therefore the
basis formed by the active dual constraints for the dual optimum, Z correspond to a cross-free family
F and in turn the basis matrix is totally unimodular. Thus for integral c, Z is an optimal integer dual
solution. Hence (1) is TDI.
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