15.083: Integer Programming and Combinatorial Optimization Problem Set 5 Solutions

Due 11/18/2009

Problem (1)

- (a) We need only prove (*iii*) if and only if each non-empty set has a smallest element. If (*iii*), then for any nonempty subset S, construct a sequence as follows: pick an arbitrary element of S and call it α(1), then keep adding elements from S to the sequence so that α(k + 1) ≺ α(k) if there were not a smallest element in S we could repeat this process indefinitely arriving at a strictly decreasing sequence that does not terminate. If each non-empty set S has a smallest element, then for any strictly decreasing sequence consider the set S = {α(k)}. S must have a smallest element and thus the sequence must eventually terminate on this smallest element.
- (b) Forall $\alpha, \beta \in \mathbb{Z}_{+}^{n}$ with $\alpha \neq \beta$, we have $\alpha \beta \neq 0$ so the check for the leftmost entry being positive is well defined and lex is a total ordering. $\alpha \beta = (\alpha + \gamma) (\beta + \gamma)$ so property (ii) holds. Any vector $\alpha \in \mathbb{Z}_{+}^{n}$ can only be greater than $O(|\alpha|_{\infty}^{b})$ other vectors with respect to the lex ordering. So any strictly decreasing sequence starting with $\alpha(1)$ can have at most $|\alpha(1)|_{1}$ terms before it terminates.
- (c) Assume \prec is a monomial ordering. For the sake of contradiction, assume $0 \succ \alpha$ for some $\alpha \in \mathbb{Z}_+^n$. Then the sequence $\alpha(k) = k\alpha$ is a strictly decreasing sequence that does not terminate. Assume (i),(ii), and for all $\alpha \in \mathbb{Z}_+^n$, $\alpha \succeq 0$. By Dickson's Lemma, for any $A \subseteq \mathbb{Z}_+^n$ we have

 $\bigcup_{\alpha \in A} (\alpha + \mathbb{Z}^n_+) = \bigcup_{k=1}^m (\alpha(k) + \mathbb{Z}^n_+) \text{ for some m. We have } \beta \succeq 0 \text{ for any } \beta \in \mathbb{Z}^n_+. \text{ So the smallest element in the }$

set $(\alpha + \mathbb{Z}_n^+)$ is α ; since by Dickson's Lemma, for any $A \subseteq \mathbb{Z}_+^n$ we have $\bigcup_{\alpha \in A} (\alpha + \mathbb{Z}_+^n) = \bigcup_{k=1}^m (\alpha(k) + \mathbb{Z}_+^n)$ for

some m. So the smallest element of A is one of the $\alpha(k)$'s; thus each set A has a smallest element.

(d) Let $f = \sum_{\alpha \in A} a_{\alpha} x^{\alpha}$; $g = \sum_{\beta \in B} b_{\beta} x^{\beta}$. Then $f \cdot g = \sum_{\alpha \in A} \sum_{\beta \in B} a_{\alpha} b\beta x^{\alpha+\beta}$. Let $\bar{\alpha} = \max_{\lambda} \{\alpha \in A\} = multi(f) \text{ and } \bar{\beta} = \max_{\lambda} \{\beta \in B\} = multi(g)$. Then by property (ii) $\bar{\alpha} + \bar{\beta} = \max_{\lambda} \{\gamma \in A + B\} = multi(f + g)$. $f + g \text{ introduces no new monomials that are not in f or g, though there may be cancelations. Suppose$ $<math>multi(f + g) \succ \max\{multi(f), multi(g)\}$. Let x^{γ} be the monomial in f + g that achieves multi(f + g). Then x^{γ} is a monomial in f or g; but $multi(f), multi(g) \prec multi(f + g)$ arriving at contradiction.

Problem (2) Every monomial ideal is a Groebner basis. If division by the ideal results in zero remainder we obviously have ideal membership. Suppose we have ideal membership, but non-zero remainder. Then $I \ni f = \sum h_i(x)x^{\alpha(i)} + r \Rightarrow LT(r) \in LT(x^{\alpha(i)}) >= I$ which means that r is divisible by at least one of the $\alpha(i)$ arriving at contradiction.

Problem (3)

(a)

- (i) Since G is minimal LT(g) = LT(g') which in turn makes G' minimal
- (ii) g' is the remainder on division of $G \setminus \{g\}$ therefore by the division algorithm, no monomial of g' is divisible by $LT(G \setminus \{g\})$
- (iii) An algorithm is simply repeating this process until all elements of G' are reduced.

(b) The reduced Groebner basis is $\langle x - 2y - 2w, z + 3w \rangle$. Parametrically the family of solutions can be described for any s,t as : (x, y, z, w) = (2s - 2t, s, -3t, t)

Problem (4) The reduced Groebner basis obtained through Maple is

 $<40y-13y^2+y^3, -8y+y^2+15x_6, 13y-y^2-40+40x_5, 5y-y^2+24x_4, 13y-y^2-40+40x_3, 5y-y^2+24x_2, x_1-1>$. The minimum solution to the cubic equation for y is $y^*=0$, propagating this value through the elimination ideal gives us an optimal solution of (1, 0, 1, 0, 1, 0).

Problem (5)

- (a) Checking all the vertices, we have an integral polytope: $\{(0,0), (0,3), (3,0), (2,2)\}$. The vectors (1,2) and (2,1) which induce the face (2,2) are not an integral generating set since they cannot generate (1,1), so we do not have a TDI system. By examining each vertex, we see that adding the constraints $x_1 + x_2 \le 4, x_1 \le 3, x_2 \le 3$ gives us a TDI system.
- (b) If we select t to be the least common integer multiple of the determinant of all submatrices B of A, we have for any c integral $A^T y = tc$ is integral by Cramer's rule. Thus we have such a TDI representation. Such a LCM exists by rationality.

(c)

(i) Given an integral solution, reverse the orientation of the arcs with $x_a = 1$. Then the number of arcs entering a proper subset are given by:

$$\sum_{a \in \delta^{-}(U)} (1 - x_a) + \sum_{a \in \delta^{+}(U)} x_a = |\delta^{-}(U)| - \sum_{a \in \delta^{-}(U)} x_a + \sum_{a \in \delta^{+}(U)} x_a \ge k$$

- (ii) Set $x_a = \frac{1}{2}$ for all $a \in A$. Constraint (1) then reduces to $2k \le |\delta^+(U)| + |\delta^-(U)|$ which is true by 2k-connectedness of G.
- (iii) Consider maximizing $\sum_{a} c_{a}x_{a}$ over (1) and let z_{U} be the dual variable corresponding to the flow constraint for subset U. Amongst all dual optimal solutions, consider the one for which $\sum_{\emptyset \neq U \subset V} z_{U}^{*}|U| \cdot |V \setminus U|$ is minimal. Consider the set $\mathcal{F} = \{U : z_{U}^{*} > 0\}$. We claim that \mathcal{F} is cross-free (ie satisfies $\forall U, T \in \mathcal{F} : U \subseteq T \text{ or } U \supseteq T \text{ or } U \cap T = \emptyset \text{ or } U \cup T = V$. Suppose $U, T \in \mathcal{F}$ is a crossing. Then let $\epsilon = \min\{z_{U}, z_{T}\} > 0$. We can then define a new dual solution \overline{z} :

$$\bar{z}_U := z_U^* - \epsilon \bar{z}_T := z_T^* - \epsilon \bar{z}_{U \cap T} := z_{U \cap T}^* + \epsilon \bar{z}_{U \cup T} := z_{U \cup T}^* + \epsilon$$

and set all other components $\bar{z}_S := z_S^*$. \bar{z} is still dual feasible and $(|\delta^-(U)| - k) + (|\delta^-(T)| - k) \ge (|\delta^-(U \cup T)| - k) + (|\delta^-(U \cap T)| - k)$ so \bar{z} is dual optimal. Furthermore, $\sum_{\emptyset \neq U \subset V} \bar{z}_U |U| \cdot |V \setminus U| < \sum_{\emptyset \neq U \subset V} z_U^* |U| \cdot |V \setminus U|$ arriving at contradiction. Therefore the basis formed by the active dual constraints for the dual optimum, \bar{z} correspond to a cross-free family \mathcal{F} and in turn the basis matrix is totally unimodular. Thus for integral c, \bar{z} is an optimal integer dual solution. Hence (1) is TDI. 15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.