15.083: Integer Programming and Combinatorial Optimization Problem Set 5 Solutions

Due 11/18/2009

Problem (1)

(a) We need only prove (iii) if and only if each non-empty set has a smallest element. If (iii), then for any nonempty subset S, construct a sequence as follows: pick an arbitrary element of S and call it $\alpha(1)$, then keep adding elements from S to the sequence so that $\alpha(k+1) \prec \alpha(k)$ if there were not a smallest element in S we could repeat this process indefinitely arriving at a strictly decreasing sequence that does not terminate.
If each non-empty set S has a smallest element, then for any strictly decreasing sequence consider the set $S=\{\alpha(k)\}$. S must have a smallest element and thus the sequence must eventually terminate on this smallest element.
(b) Forall $\alpha, \beta \in \mathbb{Z}_{+}^{n}$ with $\alpha \neq \beta$, we have $\alpha-\beta \neq 0$ so the check for the leftmost entry being positive is well defined and lex is a total ordering. $\alpha-\beta=(\alpha+\gamma)-(\beta+\gamma)$ so property (ii) holds. Any vector $\alpha \in \mathbb{Z}_{+}^{n}$ can only be greater than $O\left(|\alpha|_{\infty}^{b}\right)$ other vectors with respect to the lex ordering. So any strictly decreasing sequence starting with $\alpha(1)$ can have at most $|\alpha(1)|_{1}$ terms before it terminates.
(c) Assume \prec is a monomial ordering. For the sake of contradiction, assume $0 \succ \alpha$ for some $\alpha \in \mathbb{Z}_{+}^{n}$. Then the sequence $\alpha(k)=k \alpha$ is a strictly decreasing sequence that does not terminate.
Assume (i),(ii), and for all $\alpha \in \mathbb{Z}_{+}^{n}, \alpha \succeq 0$. By Dickson's Lemma, for any $A \subseteq \mathbb{Z}_{+}^{n}$ we have
$\bigcup_{\alpha \in A}\left(\alpha+\mathbb{Z}_{+}^{n}\right)=\bigcup_{k=1}^{m}\left(\alpha(k)+\mathbb{Z}_{+}^{n}\right)$ for some m. We have $\beta \succeq 0$ for any $\beta \in \mathbb{Z}_{+}^{n}$. So the smallest element in the set $\left(\alpha+\mathbb{Z}_{n}^{+}\right)$is α; since by Dickson's Lemma, for any $A \subseteq \mathbb{Z}_{+}^{n}$ we have $\bigcup_{\alpha \in A}\left(\alpha+\mathbb{Z}_{+}^{n}\right)=\bigcup_{k=1}^{m}\left(\alpha(k)+\mathbb{Z}_{+}^{n}\right)$ for some m . So the smallest element of A is one of the $\alpha(k)$'s; thus each set A has a smallest element.
(d) Let $f=\sum_{\alpha \in A} a_{\alpha} x^{\alpha} ; g=\sum_{\beta \in B} b_{\beta} x^{\beta}$. Then $f \cdot g=\sum_{\alpha \in A} \sum_{\beta \in B} a_{\alpha} b \beta x^{\alpha+\beta}$. Let
$\bar{\alpha}=\max _{\succ}\{\alpha \in A\}=\operatorname{multi}(f)$ and $\bar{\beta}=\max _{\succ}\{\beta \in B\}=$ multi(g). Then by property (ii)
$\bar{\alpha}+\bar{\beta}=\max _{\succ}\{\gamma \in A+B\}=\operatorname{multi}(f+g)$.
$f+g$ introduces no new monomials that are not in f or g , though there may be cancelations. Suppose multi $(f+g) \succ \max \{\operatorname{multi}(f)$, multi $(g)\}$. Let x^{γ} be the monomial in $f+g$ that achieves multi $(f+g)$. Then x^{γ} is a monomial in f or g ; but multi (f), multi $(g) \prec \operatorname{multi}(f+g)$ arriving at contradiction.

Problem (2) Every monomial ideal is a Groebner basis. If division by the ideal results in zero remainder we obviously have ideal membership. Suppose we have ideal membership, but non-zero remainder. Then $I \ni f=\sum h_{i}(x) x^{\alpha(i)}+r \Rightarrow L T(r) \in<L T\left(x^{\alpha(i)}\right)>=I$ which means that r is divisible by at least one of the $\alpha(i)$ arriving at contradiction.

Problem (3)

(a)
(i) Since G is minimal $L T(g)=L T\left(g^{\prime}\right)$ which in turn makes G^{\prime} minimal
(ii) g^{\prime} is the remainder on division of $G \backslash\{g\}$ therefore by the division algorithm, no monomial of g^{\prime} is divisible by $L T(G \backslash\{g\})$
(iii) An algorithm is simply repeating this process until all elements of G^{\prime} are reduced.
(b) The reduced Groebner basis is $\langle x-2 y-2 w, z+3 w\rangle$. Parametrically the family of solutions can be described for any s,t as : $(x, y, z, w)=(2 s-2 t, s,-3 t, t)$

Problem (4) The reduced Groebner basis obtained through Maple is $<40 y-13 y^{2}+y^{3},-8 y+y^{2}+15 x_{6}, 13 y-y^{2}-40+40 x_{5}, 5 y-y^{2}+24 x_{4}, 13 y-y^{2}-40+40 x_{3}, 5 y-y^{2}+24 x_{2}, x_{1}-1>$. The minimum solution to the cubic equation for y is $y^{*}=0$, propagating this value through the elimination ideal gives us an optimal solution of $(1,0,1,0,1,0)$.

Problem (5)

(a) Checking all the vertices, we have an integral polytope: $\{(0,0),(0,3),(3,0),(2,2)\}$. The vectors $(1,2)$ and $(2,1)$ which induce the face $(2,2)$ are not an integral generating set since they cannot generate $(1,1)$, so we do not have a TDI system. By examining each vertex, we see that adding the constraints $x_{1}+x_{2} \leq 4, x_{1} \leq 3, x_{2} \leq 3$ gives us a TDI system.
(b) If we select t to be the least common integer multiple of the determinant of all submatrices B of A , we have for any c integral $A^{T} y=t c$ is integral by Cramer's rule. Thus we have such a TDI representation. Such a LCM exists by rationality.
(c)
(i) Given an integral solution, reverse the orientation of the arcs with $x_{a}=1$. Then the number of arcs entering a proper subset are given by:

$$
\sum_{a \in \delta^{-}(U)}\left(1-x_{a}\right)+\sum_{a \in \delta^{+}(U)} x_{a}=\left|\delta^{-}(U)\right|-\sum_{a \in \delta^{-}(U)} x_{a}+\sum_{a \in \delta^{+}(U)} x_{a} \geq k
$$

(ii) Set $x_{a}=\frac{1}{2}$ for all $a \in A$. Constraint (1) then reduces to $2 k \leq\left|\delta^{+}(U)\right|+\left|\delta^{-}(U)\right|$ which is true by 2 k -connectedness of G .
(iii) Consider maximizing $\sum_{a} c_{a} x_{a}$ over (1) and let z_{U} be the dual variable corresponding to the flow constraint for subset U. Amongst all dual optimal solutions, consider the one for which $\sum_{\emptyset \neq U \subset V} z_{U}^{*}|U| \cdot|V \backslash U|$ is minimal. Consider the set $\mathcal{F}=\left\{U: z_{U}^{*}>0\right\}$. We claim that \mathcal{F} is cross-free (ie satisfies $\forall U, T \in \mathcal{F}: U \subseteq T$ or $U \supseteq T$ or $U \cap T=\emptyset$ or $U \cup T=V$. Suppose $U, T \in \mathcal{F}$ is a crossing. Then let $\epsilon=\min \left\{z_{U}, z_{T}\right\}>0$. We can then define a new dual solution \bar{z} :

$$
\begin{aligned}
\bar{z}_{U} & :=z_{U}^{*}-\epsilon \\
\bar{z}_{T} & :=z_{T}^{*}-\epsilon \\
\bar{z}_{U \cap T} & :=z_{U \cap T}^{*}+\epsilon \\
\bar{z}_{U \cup T} & :=z_{U \cup T}^{*}+\epsilon
\end{aligned}
$$

and set all other components $\bar{z}_{S}:=z_{S}^{*}$. \bar{z} is still dual feasible and
$\left(\left|\delta^{-}(U)\right|-k\right)+\left(\left|\delta^{-}(T)\right|-k\right) \geq\left(\left|\delta^{-}(U \cup T)\right|-k\right)+\left(\left|\delta^{-}(U \cap T)\right|-k\right)$ so \bar{z} is dual optimal.
Furthermore, $\sum_{\emptyset \neq U \subset V} \bar{z}_{U}|U| \cdot|V \backslash U|<\sum_{\emptyset \neq U \subset V} z_{U}^{*}|U| \cdot|V \backslash U|$ arriving at contradiction. Therefore the basis formed by the active dual constraints for the dual optimum, \bar{z} correspond to a cross-free family \mathcal{F} and in turn the basis matrix is totally unimodular. Thus for integral c, \bar{z} is an optimal integer dual solution. Hence (1) is TDI.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

