15.083J/6.859J Integer Optimization

Lecture 13: Lattices II

1 Outline

- Gram-Schmidt (GS) Orthogonalization.
- Reduced bases for lattices.
- Simultaneous Diophantine approximation.

$\mathbf{2}$ GS orthogonalization

- Input: *n* linearly independent vectors $\boldsymbol{b}^1, \ldots, \boldsymbol{b}^n \in \mathcal{Q}^n$
- **Output**: *n* linearly independent vectors $\tilde{\boldsymbol{b}}^1, \ldots, \tilde{\boldsymbol{b}}^n$ that are orthogonal and span the same linear space.
- Algorithm:
 - 1. (Initialization) $\tilde{\boldsymbol{b}}^1 = \boldsymbol{b}^1$.
 - 2. (Main iteration) For $i = 2, \ldots, n$, set:

$$\mu_{i,j} = \frac{(\boldsymbol{b}^i)'\tilde{\boldsymbol{b}}^j}{||\tilde{\boldsymbol{b}}^j||^2} \text{ for } j = 1, \dots, i-1$$
$$\tilde{\boldsymbol{b}}^i = \boldsymbol{b}^i - \sum_{j=1}^{i-1} \mu_{i,j} \tilde{\boldsymbol{b}}^j.$$

2.1 Intuition

- To initialize $\tilde{\boldsymbol{b}}^1 = \boldsymbol{b}^1$.
- Decompose $b^2 = v + u$, such that $v = \lambda b^1$ for some $\lambda \in \mathcal{R}$ and u is orthogonal to b^1 , i.e., $u'b^1 = 0$.
- Multiplying $b^2 = v + u$ by b^1 , $(b^2)'b^1 = \lambda ||b^1||^2$:

$$\lambda = \frac{(\boldsymbol{b}^2)'\boldsymbol{b}^1}{||\boldsymbol{b}^1||^2},$$
$$\tilde{\boldsymbol{b}}^2 = \boldsymbol{u} = \boldsymbol{b}^2 - \boldsymbol{v} = \boldsymbol{b}^2 - \lambda \boldsymbol{b}^1$$

• Geometrically ${ ilde b}^2$ corresponds to projecting b^2 to the subspace that is orthogonal to \boldsymbol{b}^1 .

2.2 Properties

- $(\tilde{\boldsymbol{b}}^i)'\tilde{\boldsymbol{b}}^j = 0$ for all $i \neq j$.
- $\left\{ \boldsymbol{x} \in \mathcal{R}^n \mid \boldsymbol{x} = \sum_{i=1}^k \lambda_i \boldsymbol{b}^i, \ \boldsymbol{\lambda} \in \mathcal{R}^k \right\} = \left\{ \boldsymbol{x} \in \mathcal{R}^n \mid \boldsymbol{x} = \sum_{i=1}^k \lambda_i \tilde{\boldsymbol{b}}^i, \ \boldsymbol{\lambda} \in \mathcal{R}^k \right\}$ for $k = 1, \dots, n$.
- det $(\mathcal{L}(\boldsymbol{b}^1,\ldots,\boldsymbol{b}^n)) = \prod_{j=1}^n ||\tilde{\boldsymbol{b}}^j||.$
- $||\tilde{\boldsymbol{b}}^{j}|| \leq ||\boldsymbol{b}^{j}||$ for j = 1, ..., n.

SLIDE 4

SLIDE 3

SLIDE 2

2.3 Example

- $b^1 = (4, 1)'$ and $b^2 = (1, 1)'$.
- The GS orthogonalization: $\tilde{\boldsymbol{b}}^1 = \boldsymbol{b}^1$ and

$$\tilde{\boldsymbol{b}}^2 = \boldsymbol{b}^2 - \mu_{2,1} \, \tilde{\boldsymbol{b}}^1 = (1,1)' - \frac{5}{17} \tilde{\boldsymbol{b}}^1 = \frac{1}{17} (-3,12)',$$

- Note that $\tilde{\boldsymbol{b}}^1, \tilde{\boldsymbol{b}}^2$ do not form a basis of \mathcal{L} .
- The GS orthogonalization depends on the order in which the vectors are processed.
- Consider $\boldsymbol{b}^1 = (1,1)'$ and $\boldsymbol{b}^2 = (4,1)'$. The GS orthogonalization $\tilde{\boldsymbol{b}}^1 = \boldsymbol{b}^1$, $\mu_{2,1} = 5/2$ and $\tilde{\boldsymbol{b}}^2 = (1/2)(3,-3)'$

2.4 Nearest vector

Given $x \in \mathcal{R}$:

$$[x] = \begin{cases} \lfloor x \rfloor, & \text{if } 0 \le x - \lfloor x \rfloor \le \frac{1}{2}, \\ [x], & \text{if } \frac{1}{2} < x - \lfloor x \rfloor \le 1. \end{cases}$$

 $\lfloor 1.5 \rceil = 1, \lfloor 3.7 \rceil = 4 \text{ and } \lfloor 5.2 \rceil = 5.$

- Let b^1, \ldots, b^n be a basis of the lattice \mathcal{L} with GS $\tilde{b}^1, \ldots, \tilde{b}^n$.
 - For every $z \in \mathcal{L} \setminus \{0\}$,

$$||\boldsymbol{z}|| \geq \min\{||\tilde{\boldsymbol{b}}^{1}||,\ldots,||\tilde{\boldsymbol{b}}^{n}||\}.$$

• If $\tilde{\boldsymbol{b}}^1, \ldots, \tilde{\boldsymbol{b}}^n$ is a basis of \mathcal{L} , then the nearest vector in \mathcal{L} to the vector $\boldsymbol{x} = \sum_{j=1}^n \lambda_j \tilde{\boldsymbol{b}}^j, \boldsymbol{\lambda} \in \mathcal{R}^n$ is given by:

$$oldsymbol{b}^* = \sum_{j=1}^n \mu_j ilde{oldsymbol{b}}^j, \qquad ext{where } \mu_j = \lfloor \lambda_j
ceil.$$

2.5 Proof

- $\mathbf{0} \neq \mathbf{z} = \sum_{i=1}^{n} \sigma_i \mathbf{b}^i$ with $\sigma_i \in \mathcal{Z}, i = 1, \dots, n$.
- Let k be the largest index such that $\sigma_k \neq 0$, i.e., $|\sigma_k| \geq 1$,

,

$$z = \sum_{i=1}^{k} \sigma_i \left(\tilde{b}^i + \sum_{j=1}^{i-1} \mu_{i,j} \tilde{b}^j \right)$$
$$= \sigma_k \tilde{b}^k + \sum_{j=1}^{k-1} \left(\sigma_j + \sum_{i=j+1}^{k} \sigma_i \mu_{i,j} \right) \tilde{b}^j$$
$$= \sigma_k \tilde{b}^k + \sum_{j=1}^{k-1} \lambda_j \tilde{b}^j,$$

where $\lambda_j = \sigma_j + \sum_{i=j+1}^k \sigma_i \mu_{i,j}$.

SLIDE 6

SLIDE 7

• Since $(\tilde{\boldsymbol{b}}^i)'\tilde{\boldsymbol{b}}^j = 0$,

$$||\boldsymbol{z}||^2 = \boldsymbol{z}' \boldsymbol{z} = \sum_{j=1}^{k-1} \lambda_j^2 ||\tilde{\boldsymbol{b}}^j||^2 + \sigma_k^2 ||\tilde{\boldsymbol{b}}^k||^2 \ge \sigma_k^2 ||\tilde{\boldsymbol{b}}^k||^2 \ge ||\tilde{\boldsymbol{b}}^k||^2.$$

- $||\boldsymbol{z}|| \ge ||\tilde{\boldsymbol{b}}^{k}|| \ge \min\{||\tilde{\boldsymbol{b}}^{1}||, \dots, ||\tilde{\boldsymbol{b}}^{n}||\}.$
- $\boldsymbol{b} = \sum_{j=1}^{n} \nu_j \tilde{\boldsymbol{b}}^j$ with $\nu_j \in \mathcal{Z}$, be an arbitrary vector of the lattice \mathcal{L} .
- Let $\boldsymbol{x} = \sum_{i=1}^n \lambda_i \tilde{\boldsymbol{b}}^i$, $\boldsymbol{\lambda} \in \mathcal{R}^n$. Then,

$$||m{b}-m{x}||^2 = \sum_{j=1}^n (
u_j - \lambda_j)^2 ||m{b}^j||^2 \ge \sum_{j=1}^n (\mu_j - \lambda_j)^2 ||m{b}^j||^2 = ||m{b}^* - m{x}||^2.$$

- For all $b \in \mathcal{L}$, $||b x|| \ge ||b^* x||$.
- Importance of orthogonality.

3 Reduced Bases

3.1 Definition

Let $\mathcal{L} = \mathcal{L}(\boldsymbol{b}^1, \dots, \boldsymbol{b}^n)$ with $\boldsymbol{b}^1, \dots, \boldsymbol{b}^n \in \mathcal{Q}^n$ and with GS: $\tilde{\boldsymbol{b}}^1, \dots, \tilde{\boldsymbol{b}}^n$. The basis $\{\boldsymbol{b}^1, \dots, \boldsymbol{b}^n\}$ is called **reduced** if the following conditions hold:

- (a) $|\mu_{i,j}| \leq \frac{1}{2}$, for all i, j with $1 \leq j < i \leq n$,
- (b) $||\tilde{\boldsymbol{b}}^{i+1} + \mu_{i+1,i}\tilde{\boldsymbol{b}}^{i}||^{2} \ge \frac{3}{4} ||\tilde{\boldsymbol{b}}^{i}||^{2}$, for all $i = 1, \dots, n-1$.

3.2 Intuition

- Conditions (a) and (b) jointly imply that a reduced basis consists of nearly orthogonal vectors.
- $\tilde{\boldsymbol{b}}^1 = \boldsymbol{b}^1$, condition (a) for i = 2 implies that

$$\mu_{2,1} = \frac{(\boldsymbol{b}^2)'\boldsymbol{b}^1}{||\boldsymbol{b}^1||^2} \le \frac{1}{2}$$

- From GS $b^2 = \tilde{b}^2 + \mu_{2,1} \tilde{b}^1$, and thus (b) for $i = 1 ||b^2||^2 \ge \frac{3}{4} ||b^1||^2$.
- Let θ be the angle between the two vectors \boldsymbol{b}^1 and \boldsymbol{b}^2 . Then

$$\cos\theta = \frac{(b^2)'b^1}{||b^2|| ||b^1||} = \frac{(b^2)'b^1}{||b^1||^2} \frac{||b^1||}{||b^2||} \le \frac{1}{2} \frac{2}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

This implies that $\theta \ge \cos^{-1}(1/\sqrt{3}) = 54.7^{\circ}$,

• For the purpose of achieving a bigger angle between the two vectors, that is, bringing the vectors closer to orthogonality, we would like to have as high a constant c as possible. For c = 1, conditions (a) and (b) imply that an angle θ would be at least $\cos^{-1}(1/2) = 60^{\circ}$.

SLIDE 10

SLIDE 9

3.3 Properties

For a reduced basis $\boldsymbol{b}^1,\ldots,\boldsymbol{b}^n$ of a lattice $\mathcal L$ and its GS $\tilde{\boldsymbol{b}}^1,\ldots,\tilde{\boldsymbol{b}}^n$:

- (a) $||\tilde{\boldsymbol{b}}^{j}||^{2} \ge 2^{i-j} ||\tilde{\boldsymbol{b}}^{i}||^{2}$ for all $1 \le i < j \le n$.
- (b) $||\boldsymbol{b}^1|| \le 2^{(n-1)/4} \det(\mathcal{L})^{1/n}$.
- (c) $||\boldsymbol{b}^1|| \leq 2^{(n-1)/2} \min\{||\boldsymbol{b}||: \boldsymbol{b} \in \mathcal{L} \setminus \{\boldsymbol{0}\}\}.$
- (d) $||\boldsymbol{b}^1|| \cdots ||\boldsymbol{b}^n|| \le 2^{(n(n-1))/4} \det(\mathcal{L}).$

3.4 Proof

• For all i = 1, ..., n - 1:

$$\begin{aligned} \frac{3}{4} ||\tilde{\boldsymbol{b}}^{i}||^{2} &\leq ||\tilde{\boldsymbol{b}}^{i+1} + \mu_{i+1,i}\tilde{\boldsymbol{b}}^{i}||^{2} \\ &= ||\tilde{\boldsymbol{b}}^{i+1}||^{2} + \mu_{i+1,i}^{2}||\tilde{\boldsymbol{b}}^{i}||^{2} \\ &\leq ||\tilde{\boldsymbol{b}}^{i+1}||^{2} + \frac{1}{4}||\tilde{\boldsymbol{b}}^{i}||^{2}. \end{aligned}$$

This gives

$$||\tilde{\boldsymbol{b}}^{i+1}||^2 \ge \frac{1}{2}||\tilde{\boldsymbol{b}}^i||^2$$
, for all $i = 1, \dots, n-1$,

leading to

$$||\tilde{\boldsymbol{b}}^{j}||^{2} \ge 2^{i-j} ||\tilde{\boldsymbol{b}}^{i}||^{2}$$
, for all $1 \le i < j \le n$.

• Applying part (a) for i = 1 we obtain

$$||\tilde{\boldsymbol{b}}^{j}||^{2} \ge 2^{1-j} ||\tilde{\boldsymbol{b}}^{1}||^{2} = 2^{1-j} ||\boldsymbol{b}^{1}||^{2}, \quad \text{for all } 1 \le j \le n.$$

From Proposition 6.2(c), we have

$$\det(\mathcal{L})^2 = \prod_{j=1}^n ||\tilde{\boldsymbol{b}}^j||^2 \ge \left(\prod_{j=1}^n 2^{1-j}\right) ||\boldsymbol{b}^1||^{2n} = \left(\frac{1}{2}\right)^{(n(n-1))/2} ||\boldsymbol{b}^1||^{2n},$$

proving part (b).

• From Proposition 6.3, we have that for every $b \in \mathcal{L} \setminus \{0\}$,

$$||\boldsymbol{b}||^2 \ge \min\{||\tilde{\boldsymbol{b}}^j||^2: j = 1, \dots, n\} \ge 2^{1-n} ||\boldsymbol{b}^1||^2,$$

proving part (c).

• From GS, Proposition 6.2 and the definition of a reduced basis we obtain

$$\begin{split} ||\boldsymbol{b}^{i}||^{2} &= ||\tilde{\boldsymbol{b}}^{i}||^{2} + \sum_{j=1}^{i-1} \mu_{i,j}^{2} ||\tilde{\boldsymbol{b}}^{j}||^{2} \leq ||\tilde{\boldsymbol{b}}^{i}||^{2} + \frac{1}{4} \sum_{j=1}^{i-1} ||\tilde{\boldsymbol{b}}^{j}||^{2} \\ &\leq ||\tilde{\boldsymbol{b}}^{i}||^{2} + \frac{1}{4} \sum_{j=1}^{i-1} 2^{i-j} ||\tilde{\boldsymbol{b}}^{i}||^{2} \\ &= ||\tilde{\boldsymbol{b}}^{i}||^{2} \left(1 + \frac{1}{4} (2 + \ldots + 2^{i-1})\right) \\ &= ||\tilde{\boldsymbol{b}}^{i}||^{2} \left(1 + \frac{1}{4} (2^{i} - 2)\right) \\ &\leq ||\tilde{\boldsymbol{b}}^{i}||^{2} 2^{i-1}. \end{split}$$

SLIDE 11

Using Proposition 6.2(c) we obtain

$$\prod_{i=1}^{n} ||\boldsymbol{b}^{i}||^{2} \leq 2^{(n(n-1))/2} \prod_{i=1}^{n} ||\tilde{\boldsymbol{b}}^{i}||^{2} = 2^{(n(n-1))/2} \det(\mathcal{L})^{2}$$

proving part (d).

• From Minkowski, \mathcal{L} there exist a vector $\boldsymbol{u} \in \mathcal{L}$ such that $||\boldsymbol{u}||_{\infty} \leq \det(\mathcal{L})^{1/n}$. In contrast, $||\boldsymbol{b}^1||_{\infty} \leq ||\boldsymbol{b}^1||_2 \leq 2^{(n-1)/4} \det(\mathcal{L})^{1/n}$ is weaker. The key difference is that we can find the vector \boldsymbol{b}^1 in polynomial time.

3.5 Algorithm 6.2

- Input: A basis $b^1, \ldots, b^n \in \mathbb{Z}^n$ of a lattice \mathcal{L} .
- **Output**: A basis of \mathcal{L} satisfying condition (a)
- Algorithm:
 - **1.** For i = 2, ..., n
 - For j = i 1, ..., 1
 - (a) If $|\mu_{i,j}| > 1/2$, then set $\boldsymbol{b}^i = \boldsymbol{b}^i \lfloor \mu_{i,j} \rceil \boldsymbol{b}^j$.
 - (b) Compute the GS of b^1, \ldots, b^n and the corresponding multipliers $\mu_{i,j}$.
 - **2.** Return $b^1, ..., b^n$.

3.6 Correctness

- The basis returned by Algorithm 6.2 satisfies condition (a).
- Algorithm 6.2 requires $O(n^4)$ arithmetic operations.
- Algorithm 6.2 has the invariance property that after each iteration the GS of the initial basis of \mathcal{L} remains unchanged, i.e.,

$$\boldsymbol{b}^{i} = \tilde{\boldsymbol{q}}^{i}$$
 for all $i = 1, \dots, n$.

3.7 Basis Reduction

- Input: A basis $b^1, \ldots, b^n \in \mathbb{Z}^n$ of a lattice \mathcal{L} .
- **Output**: A basis of \mathcal{L} satisfying conditions (a) and (b).
- Algorithm:

1. Compute the Gram-Schmidt orthogonalization $\tilde{\boldsymbol{b}}^1,\ldots,\tilde{\boldsymbol{b}}^n$ of the vectors $\boldsymbol{b}^1,\ldots,\boldsymbol{b}^n.$

2. Apply Algorithm 6.2.

3. For i = 1, ..., nIf $||\tilde{\boldsymbol{b}}^{i+1} + \mu_{i+1,i}\tilde{\boldsymbol{b}}^i||^2 < 3/4 ||\tilde{\boldsymbol{b}}^i||^2$, then interchange \boldsymbol{b}^i and \boldsymbol{b}^{i+1} and return to Step 1.

4. Return $b^1, ..., b^n$.

SLIDE 14

SLIDE 15

3.8 Polynomiality

Let $b^1, \ldots, b^n \in \mathbb{Z}^n$ be a basis of the lattice \mathcal{L} . The basis reduction algorithm returns a reduced basis of \mathcal{L} by performing $O(n^6 \log_2 b_{\max})$ arithmetic operations, where b_{\max} is the largest integer (in absolute value) among the entries in b^1, \ldots, b^n .

4 Simultaneous diophantine approximation

• For given numbers $\alpha_1, \ldots, \alpha_n \in \mathcal{Q}, 0 < \epsilon < 1$ and a given integer number N > 1, find $p_1, \ldots, p_n \in \mathcal{Z}$ and $q \in \mathcal{Z}_+$ with $0 < q \leq N$ satisfying:

$$\left|\alpha_i - \frac{p_i}{q}\right| < \frac{\epsilon}{q} \quad \text{for } i \in \{1, \dots, n\}.$$
 (*)

- If $N \ge \epsilon^{-n}$, then there exist $p_1, \ldots, p_n \in \mathbb{Z}$ and $q \in \mathbb{Z}_+$ with $0 < q \le N$ satisfying (*).
- Proof We define a lattice $\mathcal{L} = \mathcal{L}(\boldsymbol{b}^0, \dots, \boldsymbol{b}^n) \subseteq \mathcal{Q}^{n+1}$ where

$$\boldsymbol{b}^{0} = (\alpha_{1}, \dots, \alpha_{n}, \delta)', \ \boldsymbol{b}^{i} = -\boldsymbol{e}_{i}, \ i = 1, \dots, n,$$

 $\delta = \epsilon^{n+1}.$

• Since $\det(\mathcal{L}) = \delta = \epsilon^{n+1}$ and $\dim(\mathcal{L}) = n+1$, from Convex body theorem we obtain that there exists an $a \in \mathcal{L}$, $a \neq 0$ with $||a||_{\infty} \leq (\det(\mathcal{L}))^{1/(n+1)} = \epsilon$. Hence, there exist $q, p_1, \ldots, p_n \in \mathcal{Z}$ such that

$$\boldsymbol{a} = q \boldsymbol{b}^0 + \sum_{i=1}^n p_i \boldsymbol{b}^i,$$

with $|a_i| \leq \epsilon$, or equivalently

$$|a_i| = |q\alpha_i - p_i| \le \epsilon, \quad i = 1, \dots, n$$
$$a_n = q\delta \le \epsilon, \text{ i.e., } q \le \epsilon^{-n}.$$

• To complete the proof we need to check that q > 0. Note that we assume without loss of generality that $q \ge 0$, since we can always take -a instead of a. If q = 0, then $|p_i| \le \epsilon$ for all i. Since $p_i \in \mathbb{Z}$ and $0 < \epsilon < 1$, we have $p_i = 0$. This leads to a = 0, which is a contradiction since $a \ne 0$.

4.1 Using Basis Reduction

- Theorem If $N \ge 2^{n(n+1)/4} \epsilon^{-n}$, we can find in polynomial time $p_1, \ldots, p_n \in \mathbb{Z}$ and $q \in \mathbb{Z}_+$ with $0 < q \le N$ satisfying Eq. (*).
- $\delta = 2^{-n(n+1)/4} \epsilon^{n+1}$ in the basis for the lattice \mathcal{L} defined earlier.
- Applying Basis Reduction we find in polynomial time a reduced basis of \mathcal{L} . The first vector $\mathbf{c} \in \mathcal{L}$ in the reduced basis satisfies (recall that we use n + 1 instead of n, since dim $(\mathcal{L}) = n + 1$)

$$||\mathbf{c}||_{\infty} \le ||\mathbf{c}||_2 \le 2^{n/4} \det(\mathcal{L})^{1/(n+1)} = 2^{n/4} \delta^{1/(n+1)} = \epsilon.$$

SLIDE 18

SLIDE 16

Hence, we can find $p_1, \ldots, p_n \in \mathbb{Z}$ and $q \in \mathbb{Z}_+$ such that

$$\boldsymbol{c} = q\boldsymbol{b}^0 + \sum_{i=1}^n p_i \boldsymbol{b}^i,$$

with $|c_i| \leq \epsilon$, or equivalently

 c_n

$$\begin{aligned} |c_i| &= |q\alpha_i - p_i| \le \epsilon, \qquad i = 1, \dots, n \\ &= q\delta \le \epsilon, \text{ i.e., } q \le 2^{n(n+1)/4} \epsilon^{-n}. \end{aligned}$$

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.