15.083J/6.859J Integer Optimization

Lecture 13: Lattices II

1 Outline

- Gram-Schmidt (GS) Orthogonalization.
- Reduced bases for lattices.
- Simultaneous Diophantine approximation.

2 GS orthogonalization

- Input: n linearly independent vectors $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n} \in \mathcal{Q}^{n}$
- Output: n linearly independent vectors $\tilde{\boldsymbol{b}}^{1}, \ldots, \tilde{\boldsymbol{b}}^{n}$ that are orthogonal and span the same linear space.
- Algorithm:

1. (Initialization) $\tilde{b}^{1}=\boldsymbol{b}^{1}$.
2. (Main iteration) For $i=2, \ldots, n$, set:

$$
\begin{aligned}
\mu_{i, j} & =\frac{\left(\boldsymbol{b}^{i}\right)^{\prime} \tilde{\boldsymbol{b}}^{j}}{\left\|\tilde{\boldsymbol{b}}^{j}\right\|^{2}} \text { for } j=1, \ldots, i-1, \\
\tilde{\boldsymbol{b}}^{i} & =\boldsymbol{b}^{i}-\sum_{j=1}^{i-1} \mu_{i, j} \tilde{\boldsymbol{b}}^{j}
\end{aligned}
$$

2.1 Intuition

- To initialize $\tilde{\boldsymbol{b}}^{1}=\boldsymbol{b}^{1}$.
- Decompose $\boldsymbol{b}^{2}=\boldsymbol{v}+\boldsymbol{u}$, such that $\boldsymbol{v}=\lambda \boldsymbol{b}^{1}$ for some $\lambda \in \mathcal{R}$ and \boldsymbol{u} is orthogonal to \boldsymbol{b}^{1}, i.e., $\boldsymbol{u}^{\prime} \boldsymbol{b}^{1}=0$.
- Multiplying $\boldsymbol{b}^{2}=\boldsymbol{v}+\boldsymbol{u}$ by $\boldsymbol{b}^{1},\left(\boldsymbol{b}^{2}\right)^{\prime} \boldsymbol{b}^{1}=\lambda\left\|\boldsymbol{b}^{1}\right\|^{2}$:

$$
\begin{gathered}
\lambda=\frac{\left(\boldsymbol{b}^{2}\right)^{\prime} \boldsymbol{b}^{1}}{\left\|\boldsymbol{b}^{1}\right\|^{2}} \\
\tilde{b}^{2}=\boldsymbol{u}=\boldsymbol{b}^{2}-\boldsymbol{v}=\boldsymbol{b}^{2}-\lambda \boldsymbol{b}^{1}
\end{gathered}
$$

- Geometrically \tilde{b}^{2} corresponds to projecting b^{2} to the subspace that is orthogonal to \boldsymbol{b}^{1}.

2.2 Properties

- $\left(\tilde{b}^{i}\right)^{\prime} \tilde{b}^{j}=0$ for all $i \neq j$.
- $\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid \boldsymbol{x}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{b}^{i}, \boldsymbol{\lambda} \in \mathcal{R}^{k}\right\}=\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid \boldsymbol{x}=\sum_{i=1}^{k} \lambda_{i} \tilde{\boldsymbol{b}}^{i}, \boldsymbol{\lambda} \in \mathcal{R}^{k}\right\}$ for $k=1, \ldots, n$.
- $\operatorname{det}\left(\mathcal{L}\left(\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n}\right)\right)=\prod_{j=1}^{n}\left\|\tilde{\boldsymbol{b}}^{j}\right\|$.
- $\left\|\tilde{\boldsymbol{b}}^{j}\right\| \leq\left\|\boldsymbol{b}^{j}\right\|$ for $j=1, \ldots, n$.

2.3 Example

- $\boldsymbol{b}^{1}=(4,1)^{\prime}$ and $\boldsymbol{b}^{2}=(1,1)^{\prime}$.
- The GS orthogonalization: $\tilde{\boldsymbol{b}}^{1}=\boldsymbol{b}^{1}$ and

$$
\tilde{b}^{2}=b^{2}-\mu_{2,1} \tilde{b}^{1}=(1,1)^{\prime}-\frac{5}{17} \tilde{b}^{1}=\frac{1}{17}(-3,12)^{\prime}
$$

- Note that $\tilde{b}^{1}, \tilde{b}^{2}$ do not form a basis of \mathcal{L}.
- The GS orthogonalization depends on the order in which the vectors are processed.
- Consider $\boldsymbol{b}^{1}=(1,1)^{\prime}$ and $\boldsymbol{b}^{2}=(4,1)^{\prime}$. The GS orthogonalization $\tilde{b}^{1}=\boldsymbol{b}^{1}$, $\mu_{2,1}=5 / 2$ and $\tilde{\boldsymbol{b}}^{2}=(1 / 2)(3,-3)^{\prime}$

2.4 Nearest vector

Given $x \in \mathcal{R}$:

$$
\lfloor x\rceil= \begin{cases}\lfloor x\rfloor, & \text { if } 0 \leq x-\lfloor x\rfloor \leq \frac{1}{2}, \\ \lceil x\rceil, & \text { if } \frac{1}{2}<x-\lfloor x\rfloor \leq 1 .\end{cases}
$$

$\lfloor 1.5\rceil=1,\lfloor 3.7\rceil=4$ and $\lfloor 5.2\rceil=5$.
Let $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n}$ be a basis of the lattice \mathcal{L} with GS $\tilde{\boldsymbol{b}}^{1}, \ldots, \tilde{\boldsymbol{b}}^{n}$.

- For every $\boldsymbol{z} \in \mathcal{L} \backslash\{\mathbf{0}\}$,

$$
\|\boldsymbol{z}\| \geq \min \left\{\left\|\tilde{\boldsymbol{b}}^{1}\right\|, \ldots,\left\|\tilde{b}^{n}\right\|\right\}
$$

- If $\tilde{\boldsymbol{b}}^{1}, \ldots, \tilde{\boldsymbol{b}}^{n}$ is a basis of \mathcal{L}, then the nearest vector in \mathcal{L} to the vector $x=$ $\sum_{j=1}^{n} \lambda_{j} \tilde{\boldsymbol{b}}^{j}, \boldsymbol{\lambda} \in \mathcal{R}^{n}$ is given by:

$$
b^{*}=\sum_{j=1}^{n} \mu_{j} \tilde{b}^{j}, \quad \text { where } \mu_{j}=\left\lfloor\lambda_{j}\right\rceil .
$$

2.5 Proof

- $\mathbf{0} \neq \boldsymbol{z}=\sum_{i=1}^{n} \sigma_{i} \boldsymbol{b}^{i}$ with $\sigma_{i} \in \mathcal{Z}, i=1, \ldots, n$.
- Let k be the largest index such that $\sigma_{k} \neq 0$, i.e., $\left|\sigma_{k}\right| \geq 1$,

$$
\begin{aligned}
\boldsymbol{z} & =\sum_{i=1}^{k} \sigma_{i}\left(\tilde{\boldsymbol{b}}^{i}+\sum_{j=1}^{i-1} \mu_{i, j} \tilde{\boldsymbol{b}}^{j}\right) \\
& =\sigma_{k} \tilde{\boldsymbol{b}}^{k}+\sum_{j=1}^{k-1}\left(\sigma_{j}+\sum_{i=j+1}^{k} \sigma_{i} \mu_{i, j}\right) \tilde{\boldsymbol{b}}^{j} \\
& =\sigma_{k} \tilde{\boldsymbol{b}}^{k}+\sum_{j=1}^{k-1} \lambda_{j} \tilde{\boldsymbol{b}}^{j},
\end{aligned}
$$

where $\lambda_{j}=\sigma_{j}+\sum_{i=j+1}^{k} \sigma_{i} \mu_{i, j}$.

- Since $\left(\tilde{\boldsymbol{b}}^{i}\right)^{\prime} \tilde{\boldsymbol{b}}^{j}=0$,

$$
\|\boldsymbol{z}\|^{2}=\boldsymbol{z}^{\prime} \boldsymbol{z}=\sum_{j=1}^{k-1} \lambda_{j}^{2}\left\|\tilde{\boldsymbol{b}}^{j}\right\|^{2}+\sigma_{k}^{2}\left\|\tilde{\boldsymbol{b}}^{k}\right\|^{2} \geq \sigma_{k}^{2}\left\|\tilde{\boldsymbol{b}}^{k}\right\|^{2} \geq\left\|\tilde{\boldsymbol{b}}^{k}\right\|^{2}
$$

- $\|\boldsymbol{z}\| \geq\left\|\tilde{\boldsymbol{b}}^{k}\right\| \geq \min \left\{\left\|\tilde{\boldsymbol{b}}^{1}\right\|, \ldots,\left\|\tilde{\boldsymbol{b}}^{n}\right\|\right\}$.
- $b=\sum_{j=1}^{n} \nu_{j} \tilde{b}^{j}$ with $\nu_{j} \in \mathcal{Z}$, be an arbitrary vector of the lattice \mathcal{L}.
- Let $\boldsymbol{x}=\sum_{i=1}^{n} \lambda_{j} \tilde{\boldsymbol{b}}^{j}, \boldsymbol{\lambda} \in \mathcal{R}^{n}$. Then,

$$
\|\boldsymbol{b}-x\|^{2}=\sum_{j=1}^{n}\left(\nu_{j}-\lambda_{j}\right)^{2}\left\|\tilde{b}^{j}\right\|^{2} \geq \sum_{j=1}^{n}\left(\mu_{j}-\lambda_{j}\right)^{2}\left\|\tilde{b}^{j}\right\|^{2}=\left\|\boldsymbol{b}^{*}-x\right\|^{2} .
$$

- For all $\boldsymbol{b} \in \mathcal{L},\|\boldsymbol{b}-\boldsymbol{x}\| \geq\left\|\boldsymbol{b}^{*}-\boldsymbol{x}\right\|$.
- Importance of orthogonality.

3 Reduced Bases

3.1 Definition

Let $\mathcal{L}=\mathcal{L}\left(\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n}\right)$ with $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n} \in \mathcal{Q}^{n}$ and with GS: $\tilde{\boldsymbol{b}}^{1}, \ldots, \tilde{\boldsymbol{b}}^{n}$. The basis $\left\{\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n}\right\}$ is called reduced if the following conditions hold:

- (a) $\left|\mu_{i, j}\right| \leq \frac{1}{2}$, for all i, j with $1 \leq j<i \leq n$,
- (b) $\left\|\tilde{\boldsymbol{b}}^{i+1}+\mu_{i+1, i} \tilde{\boldsymbol{b}}^{i}\right\|^{2} \geq \frac{3}{4}\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2}$, for all $i=1, \ldots, n-1$.

3.2 Intuition

- Conditions (a) and (b) jointly imply that a reduced basis consists of nearly orthogonal vectors.
- $\tilde{b}^{1}=\boldsymbol{b}^{1}$, condition (a) for $i=2$ implies that

$$
\mu_{2,1}=\frac{\left(\boldsymbol{b}^{2}\right)^{\prime} \boldsymbol{b}^{1}}{\left\|\boldsymbol{b}^{1}\right\|^{2}} \leq \frac{1}{2}
$$

- From GS $\boldsymbol{b}^{2}=\tilde{\boldsymbol{b}}^{2}+\mu_{2,1} \tilde{\boldsymbol{b}}^{1}$, and thus (b) for $i=1\left\|\boldsymbol{b}^{2}\right\|^{2} \geq \frac{3}{4}\left\|\boldsymbol{b}^{1}\right\|^{2}$.
- Let θ be the angle between the two vectors \boldsymbol{b}^{1} and \boldsymbol{b}^{2}. Then

$$
\cos \theta=\frac{\left(\boldsymbol{b}^{2}\right)^{\prime} \boldsymbol{b}^{1}}{\left\|\boldsymbol{b}^{2}\right\|\left\|\boldsymbol{b}^{1}\right\|}=\frac{\left(\boldsymbol{b}^{2}\right)^{\prime} \boldsymbol{b}^{1}}{\left\|\boldsymbol{b}^{1}\right\|^{2}} \frac{\left\|\boldsymbol{b}^{1}\right\|}{\left\|\boldsymbol{b}^{2}\right\|} \leq \frac{1}{2} \frac{2}{\sqrt{3}}=\frac{1}{\sqrt{3}} .
$$

This implies that $\theta \geq \cos ^{-1}(1 / \sqrt{3})=54.7^{\circ}$,

- For the purpose of achieving a bigger angle between the two vectors, that is, bringing the vectors closer to orthogonality, we would like to have as high a constant c as possible. For $c=1$, conditions (a) and (b) imply that an angle θ would be at least $\cos ^{-1}(1 / 2)=60^{\circ}$.

3.3 Properties

For a reduced basis $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n}$ of a lattice \mathcal{L} and its GS $\tilde{\boldsymbol{b}}^{1}, \ldots, \tilde{\boldsymbol{b}}^{n}$:

- (a) $\left\|\tilde{\boldsymbol{b}}^{j}\right\|^{2} \geq 2^{i-j}\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2}$ for all $1 \leq i<j \leq n$.
- (b) $\left\|\boldsymbol{b}^{1}\right\| \leq 2^{(n-1) / 4} \operatorname{det}(\mathcal{L})^{1 / n}$.
- (c) $\left\|\boldsymbol{b}^{1}\right\| \leq 2^{(n-1) / 2} \min \{\|\boldsymbol{b}\|: \boldsymbol{b} \in \mathcal{L} \backslash\{\mathbf{0}\}\}$.
- (d) $\left\|\boldsymbol{b}^{1}\right\| \cdots\left\|\boldsymbol{b}^{n}\right\| \leq 2^{(n(n-1)) / 4} \operatorname{det}(\mathcal{L})$.

3.4 Proof

- For all $i=1, \ldots, n-1$:

$$
\begin{aligned}
\frac{3}{4}\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2} & \leq\left\|\tilde{\boldsymbol{b}}^{i+1}+\mu_{i+1, i} \tilde{\boldsymbol{b}}^{i}\right\|^{2} \\
& =\left\|\tilde{\boldsymbol{b}}^{i+1}\right\|^{2}+\mu_{i+1, i}^{2}\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2} \\
& \leq\left\|\tilde{\boldsymbol{b}}^{i+1}\right\|^{2}+\frac{1}{4}\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2} .
\end{aligned}
$$

This gives

$$
\left\|\tilde{\boldsymbol{b}}^{i+1}\right\|^{2} \geq \frac{1}{2}\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2}, \text { for all } i=1, \ldots, n-1
$$

leading to

$$
\left\|\tilde{\boldsymbol{b}}^{j}\right\|^{2} \geq 2^{i-j}\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2}, \text { for all } 1 \leq i<j \leq n
$$

- Applying part (a) for $i=1$ we obtain

$$
\left\|\tilde{\boldsymbol{b}}^{j}\right\|^{2} \geq 2^{1-j}\left\|\tilde{\boldsymbol{b}}^{1}\right\|^{2}=2^{1-j}\left\|\boldsymbol{b}^{1}\right\|^{2}, \quad \text { for all } 1 \leq j \leq n
$$

From Proposition 6.2(c), we have

$$
\operatorname{det}(\mathcal{L})^{2}=\prod_{j=1}^{n}\left\|\tilde{\boldsymbol{b}}^{j}\right\|^{2} \geq\left(\prod_{j=1}^{n} 2^{1-j}\right)\left\|\boldsymbol{b}^{1}\right\|^{2 n}=\left(\frac{1}{2}\right)^{(n(n-1)) / 2}\left\|\boldsymbol{b}^{1}\right\|^{2 n}
$$

proving part (b).

- From Proposition 6.3, we have that for every $\boldsymbol{b} \in \mathcal{L} \backslash\{\mathbf{0}\}$,

$$
\|\boldsymbol{b}\|^{2} \geq \min \left\{\left\|\tilde{\boldsymbol{b}}^{j}\right\|^{2}: j=1, \ldots, n\right\} \geq 2^{1-n}\left\|\boldsymbol{b}^{1}\right\|^{2}
$$

proving part (c).

- From GS, Proposition 6.2 and the definition of a reduced basis we obtain

$$
\begin{aligned}
\left\|\boldsymbol{b}^{i}\right\|^{2}=\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2}+\sum_{j=1}^{i-1} \mu_{i, j}^{2}\left\|\tilde{\boldsymbol{b}}^{j}\right\|^{2} & \leq\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2}+\frac{1}{4} \sum_{j=1}^{i-1}\left\|\tilde{\boldsymbol{b}}^{j}\right\|^{2} \\
& \leq\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2}+\frac{1}{4} \sum_{j=1}^{i-1} 2^{i-j}\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2} \\
& =\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2}\left(1+\frac{1}{4}\left(2+\ldots+2^{i-1}\right)\right) \\
& =\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2}\left(1+\frac{1}{4}\left(2^{i}-2\right)\right) \\
& \leq\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2} 2^{i-1} .
\end{aligned}
$$

Using Proposition 6.2(c) we obtain

$$
\prod_{i=1}^{n}\left\|\boldsymbol{b}^{i}\right\|^{2} \leq 2^{(n(n-1)) / 2} \prod_{i=1}^{n}\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2}=2^{(n(n-1)) / 2} \operatorname{det}(\mathcal{L})^{2}
$$

proving part (d).

- From Minkowvski, \mathcal{L} there exist a vector $\boldsymbol{u} \in \mathcal{L}$ such that $\|\boldsymbol{u}\|_{\infty} \leq \operatorname{det}(\mathcal{L})^{1 / n}$. In contrast, $\left\|\boldsymbol{b}^{1}\right\|_{\infty} \leq\left\|\boldsymbol{b}^{1}\right\|_{2} \leq 2^{(n-1) / 4} \operatorname{det}(\mathcal{L})^{1 / n}$ is weaker. The key difference is that we can find the vector \boldsymbol{b}^{1} in polynomial time.

3.5 Algorithm 6.2

- Input: A basis $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n} \in \mathcal{Z}^{n}$ of a lattice \mathcal{L}.
- Output: A basis of \mathcal{L} satisfying condition (a)
- Algorithm:

1. For $i=2, \ldots, n$

For $j=i-1, \ldots, 1$
(a) If $\left|\mu_{i, j}\right|>1 / 2$, then set $\boldsymbol{b}^{i}=\boldsymbol{b}^{i}-\left\lfloor\mu_{i, j}\right\rangle \boldsymbol{b}^{j}$.
(b) Compute the GS of $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n}$ and the corresponding multipliers $\mu_{i, j}$.
2. Return $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n}$.

3.6 Correctness

- The basis returned by Algorithm 6.2 satisfies condition (a).
- Algorithm 6.2 requires $O\left(n^{4}\right)$ arithmetic operations.
- Algorithm 6.2 has the invariance property that after each iteration the GS of the initial basis of \mathcal{L} remains unchanged, i.e.,

$$
\tilde{\boldsymbol{b}}^{i}=\tilde{\boldsymbol{q}}^{i} \text { for all } i=1, \ldots, n
$$

3.7 Basis Reduction

- Input: A basis $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n} \in \mathcal{Z}^{n}$ of a lattice \mathcal{L}.
- Output: A basis of \mathcal{L} satisfying conditions (a) and (b).
- Algorithm:

1. Compute the Gram-Schmidt orthogonalization $\tilde{\boldsymbol{b}}^{1}, \ldots, \tilde{\boldsymbol{b}}^{n}$ of the vectors $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n}$.
2. Apply Algorithm 6.2.
3. For $i=1, \ldots, n$

If $\left\|\tilde{\boldsymbol{b}}^{i+1}+\mu_{i+1, i} \tilde{\boldsymbol{b}}^{i}\right\|^{2}<3 / 4\left\|\tilde{\boldsymbol{b}}^{i}\right\|^{2}$, then interchange \boldsymbol{b}^{i} and \boldsymbol{b}^{i+1} and return to Step 1.
4. Return $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n}$.

3.8 Polynomiality

Let $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n} \in \mathcal{Z}^{n}$ be a basis of the lattice \mathcal{L}. The basis reduction algorithm returns a reduced basis of \mathcal{L} by performing $O\left(n^{6} \log _{2} b_{\text {max }}\right)$ arithmetic operations, where $b_{\max }$ is the largest integer (in absolute value) among the entries in $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n}$.

4 Simultaneous diophantine approximation

- For given numbers $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{Q}, 0<\epsilon<1$ and a given integer number $N>1$, find $p_{1}, \ldots, p_{n} \in \mathcal{Z}$ and $q \in \mathcal{Z}_{+}$with $0<q \leq N$ satisfying:

$$
\begin{equation*}
\left|\alpha_{i}-\frac{p_{i}}{q}\right|<\frac{\epsilon}{q} \quad \text { for } i \in\{1, \ldots, n\} . \tag{*}
\end{equation*}
$$

- If $N \geq \epsilon^{-n}$, then there exist $p_{1}, \ldots, p_{n} \in \mathcal{Z}$ and $q \in \mathcal{Z}_{+}$with $0<q \leq N$ satisfying (*).
- Proof We define a lattice $\mathcal{L}=\mathcal{L}\left(\boldsymbol{b}^{0}, \ldots, \boldsymbol{b}^{n}\right) \subseteq \mathcal{Q}^{n+1}$ where

$$
\boldsymbol{b}^{0}=\left(\alpha_{1}, \ldots, \alpha_{n}, \delta\right)^{\prime}, \boldsymbol{b}^{i}=-\boldsymbol{e}_{i}, i=1, \ldots, n,
$$

$\delta=\epsilon^{n+1}$.

- Since $\operatorname{det}(\mathcal{L})=\delta=\epsilon^{n+1}$ and $\operatorname{dim}(\mathcal{L})=n+1$, from Convex body theorem we obtain that there exists an $\boldsymbol{a} \in \mathcal{L}, \boldsymbol{a} \neq \mathbf{0}$ with $\|\boldsymbol{a}\|_{\infty} \leq(\operatorname{det}(\mathcal{L}))^{1 /(n+1)}=\epsilon$. Hence, there exist $q, p_{1}, \ldots, p_{n} \in \mathcal{Z}$ such that

$$
\boldsymbol{a}=q \boldsymbol{b}^{0}+\sum_{i=1}^{n} p_{i} \boldsymbol{b}^{i},
$$

with $\left|a_{i}\right| \leq \epsilon$, or equivalently

$$
\begin{gathered}
\left|a_{i}\right|=\left|q \alpha_{i}-p_{i}\right| \leq \epsilon, \quad i=1, \ldots, n \\
a_{n}=q \delta \leq \epsilon, \text { i.e., } q \leq \epsilon^{-n} .
\end{gathered}
$$

- To complete the proof we need to check that $q>0$. Note that we assume without loss of generality that $q \geq 0$, since we can always take $-\boldsymbol{a}$ instead of \boldsymbol{a}. If $q=0$, then $\left|p_{i}\right| \leq \epsilon$ for all i. Since $p_{i} \in \mathcal{Z}$ and $0<\epsilon<1$, we have $p_{i}=0$. This leads to $\boldsymbol{a}=\mathbf{0}$, which is a contradiction since $\boldsymbol{a} \neq \mathbf{0}$.

4.1 Using Basis Reduction

- Theorem If $N \geq 2^{n(n+1) / 4} \epsilon^{-n}$, we can find in polynomial time $p_{1}, \ldots, p_{n} \in \mathcal{Z}$ and $q \in \mathcal{Z}_{+}$with $0<q \leq N$ satisfying Eq. (*).
- $\delta=2^{-n(n+1) / 4} \epsilon^{n+1}$ in the basis for the lattice \mathcal{L} defined earlier.
- Applying Basis Reduction we find in polynomial time a reduced basis of \mathcal{L}. The first vector $\boldsymbol{c} \in \mathcal{L}$ in the reduced basis satisfies (recall that we use $n+1$ instead of n, since $\operatorname{dim}(\mathcal{L})=n+1)$

$$
\|\boldsymbol{c}\|_{\infty} \leq\|\boldsymbol{c}\|_{2} \leq 2^{n / 4} \operatorname{det}(\mathcal{L})^{1 /(n+1)}=2^{n / 4} \delta^{1 /(n+1)}=\epsilon .
$$

Hence, we can find $p_{1}, \ldots, p_{n} \in \mathcal{Z}$ and $q \in \mathcal{Z}_{+}$such that

$$
\boldsymbol{c}=q \boldsymbol{b}^{0}+\sum_{i=1}^{n} p_{i} \boldsymbol{b}^{i}
$$

with $\left|c_{i}\right| \leq \epsilon$, or equivalently

$$
\left|c_{i}\right|=\left|q \alpha_{i}-p_{i}\right| \leq \epsilon, \quad i=1, \ldots, n
$$

$c_{n}=q \delta \leq \epsilon$, i.e., $q \leq 2^{n(n+1) / 4} \epsilon^{-n}$.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

 Fall 2009For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

