15.083J/6.859J Integer Optimization

Lecture 2: Efficient Algorithms and Computational Complexity

1 Outline

- Efficient algorithms
- Complexity
- The classes \mathcal{P} and $\mathcal{N} \mathcal{P}$
- The classes $\mathcal{N} \mathcal{P}$-complete and $\mathcal{N} \mathcal{P}$-hard
- What if a problem is $\mathcal{N P}$ hard?

2 Efficient algorithms

- The LO problem

$$
\begin{aligned}
\min & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\mathrm{s.t.} & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{aligned}
$$

- A LO instance

$$
\begin{array}{cl}
\min & 2 x+3 y \\
\text { s.t. } & x+y \leq 1 \\
& x, y \geq 0
\end{array}
$$

- A problem is a collection of instances

2.1 Size

- The size of an instance is the number of bits used to describe the instance, according to a prespecified format
- A number $r \leq U$

$$
r=a_{k} 2^{k}+a_{k-1} 2^{k-1}+\cdots+a_{1} 2^{1}+a_{0}
$$

is represented by $\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ with $k \leq\left\lfloor\log _{2} U\right\rfloor$

- Size of r is $\left\lfloor\log _{2} U\right\rfloor+2$
- Instance of LO: $(\boldsymbol{c}, \boldsymbol{A}, \boldsymbol{b})$
- Size is

$$
(m n+m+n)\left(\left\lfloor\log _{2} U\right\rfloor+2\right)
$$

- What is an instance of the Traveling Salesman Problem (TSP)?
- What is the size of such an instance?

2.2 Running Time

Let A be an algorithm which solves the optimization problem Π.
If there exists a constant $\alpha>0$ such that A terminates its computation after at most $\alpha f(|I|)$ elementary steps for each instance $I(|I|$ is the size of $I)$, then A runs in $\mathrm{O}(f)$ time.

Elementary operations are

- variable assignments
- comparison of numbers
- random access to variables
- arithmetic operations
- conditional jumps
- ...

A "brute force" algorithm for solving the min-cost flow problem:
Consider all spanning trees and pick the best tree solution among the feasible ones.
Suppose we had a computer to check 10^{15} trees in a second. It would need more than 10^{9} years to find the best tree for a 25 -node min-cost flow problem.
It would need 10^{59} years for a 50-node instance.
That's not efficient!
Ideally, we would like to call an algorithm "efficient" when it is sufficiently fast to be usable in practice, but this is a rather vague and slippery notion.

The following notion has gained wide acceptance:
An algorithm is considered efficient if the number of steps it performs for any input is bounded by a polynomial function of the input size.

Polynomials are, e.g., n, n^{3}, or $10^{6} n^{8}$.

2.3 The Tyranny of

Exponential Growth

	$100 n \log n$	$10 n^{2}$	$n^{3.5}$	2^{n}	$n!$	n^{n-2}
$10^{9} / \mathrm{sec}$	$1.19 \cdot 10^{9}$	600,000	3,868	41	15	13
$10^{10} / \mathrm{sec}$	$1.08 \cdot 10^{10}$	$1,897,370$	7,468	45	16	13

Maximum input sizes solvable within one hour.

2.3.1 Pros of the Polynomial View

- Extreme rates of growth, such as n^{80} or $2^{n / 100}$, rarely come up in practice.
- Asymptotically, a polynomial function always yields smaller values than any exponential function.
- Polynomial-time algorithms are in a better position to take advantage of technological improvements in the speed of computers.
- You can add two polynomials, multiply them, and compose them, and the result will still be a polynomial.

2.4 Punch line

The equation

$$
\text { efficient }=\text { polynomial }
$$

has been accepted as the best available way of tying the empirical notion of a "practical algorithm" to a precisely formalized mathematical concept.

2.5 Definition

An algorithm runs in polynomial time if its running time is $\mathrm{O}\left(|I|^{k}\right)$, where $|I|$ is the input size, and all numbers in intermediate computations can be stored with $\mathrm{O}\left(|I|^{k}\right)$ bits.

3 Complexity Theory

3.1 Recognition Problems

- A recognition problem is one that has a binary answer: YES or NO.
- Example: Is the value of an IO problem less than or equal to B?
- Example: Can a graph be colored with 4 colors?
- Example: Is a number p composite?

3.2 Transformations-reductions

- Definition: Let Π_{1} and Π_{2} be two recognition problems. We say that Π_{1} transforms to Π_{2} in polynomial if there exist a polynomial time algorithm that given an instance I_{1} of of problem Π_{1}, outputs an instance I_{2} of Π_{2} with the property that I_{1} is a YES instance of Π_{1} if and only if I_{2} is a YES instance of Π_{2}.
- Suppose there exists an algorithm for some problem Π_{1} that consists of a polynomial time computation in addition to a polynomial number of subroutine calls to an algorithm for problem Π_{2}. We then say that problem Π_{1} reduces (in polynomial time) to problem Π_{2}.

3.3 Properties

- Theorem: If problem Π_{1} transforms to problem Π_{2} in polynomial time, and if Π_{2} is solvable in polynomial time, then Π_{1} is also solvable in polynomial time.
- Interpretation: a) Π_{1} is "no harder" than $\Pi_{2} ;$ b) Π_{2} is "at least as hard" as Π_{1}; if there existed a polynomial time algorithm for Π_{2}, then the same would be true for Π_{1}.
- If we have some evidence that $\Pi_{1} \notin \mathcal{P}$, a transformation of Π_{1} to Π_{2} would provide equally strong evidence that $\Pi_{2} \notin \mathcal{P}$.
- Property: If problem problem Π_{1} transforms to problem Π_{2} and problem Π_{2} transforms to problem Π_{3}, then problem Π_{1} transforms to problem Π_{3}.

4 The classes $\mathcal{P}-\mathcal{N} \mathcal{P}$

- A recognition problem Π is in \mathcal{P} if it is solvable in polynomial time.
- Is $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}$ feasible? It is in \mathcal{P}.
- A problem Π belongs to $\mathcal{N} \mathcal{P}$ if given an instance I of Π, there exists a certificate of size polynomial in the size of I, such that together with this certificate we can decide, whether I is a YES instance in polynomial time.
- BIO: is the problem $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \in\{0,1\}^{n}$ feasible?
- Certificate: A feasible solution \boldsymbol{x}_{0}. We can check whether $\boldsymbol{A} \boldsymbol{x}_{0} \leq \boldsymbol{b}$.
- TSP: Is there a tour of length less than or equal to L ? Is $T S P \in \mathcal{N} \mathcal{P}$?
- Property: $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$.
- Open problem: Is $\mathcal{P}=\mathcal{N} \mathcal{P}$?

5 The class $\mathcal{N} \mathcal{P}$-complete

- A problem Π is $\mathcal{N} \mathcal{P}$-complete if $\Pi \in \mathcal{N} \mathcal{P}$ and all other problems in $\mathcal{N} \mathcal{P}$ polynomially reduce to it.
- Theorem: BIO is $\mathcal{N} \mathcal{P}$-complete.
- Theorem: TSP is $\mathcal{N P}$-complete.
- A problem Π is $\mathcal{N} \mathcal{P}$-hard if all other problems in $\mathcal{N} \mathcal{P}$ polynomially reduce to it.
- A polynomial time algorithm for an $\mathcal{N} \mathcal{P}$-hard problem would imply $\mathcal{P}=\mathcal{N} \mathcal{P}$.
- Thousands of DOPs are $\mathcal{N} \mathcal{P}$-hard. Examples: knapsack, facility location, set covering, set packing, set partitioning, sequencing with setup times, and traveling salesman problems.

5.1 Proving $\mathcal{N} \mathcal{P}$-hardness

- Theorem: Suppose that a problem Π_{0} is $\mathcal{N} \mathcal{P}$-hard and that Π_{0} can be transformed (in polynomial time) to another problem Π. Then, Π is $\mathcal{N} \mathcal{P}$ hard.
- Useful theorem as there are thousands of $\mathcal{N} \mathcal{P}$-hard problems. Any one of these problems can play the role of Π_{0}, and this provides us with a lot of latitude when attempting to prove $\mathcal{N} \mathcal{P}$-hardness of a given problem Π.
- Given a problem Π whose $\mathcal{N} \mathcal{P}$-hardness we wish to establish, we search for a known $\mathcal{N} \mathcal{P}$-hard problem Π_{0} that appears to be closely related to Π. We then attempt to construct a transformation of Π_{0} to Π. Coming up with such transformations is mostly an art, based on ingenuity and experience, and there are very few general guidelines.

5.2 Example

- Δ TSP: Given a complete undirected graph, a bound L and $\operatorname{costs} c_{i j}=c_{j i}$:

$$
c_{i j} \leq c_{i k}+c_{k j}, \quad \forall i, j, k
$$

Does there exists a tour with cost less than or equal to L ?

- Theorem: Δ TSP is $\mathcal{N} \mathcal{P}$-complete.
- Hamilton circuit: Given an undirected graph does there exists a tour?
- We transform Hamilton circuit to Δ TSP. Since Hamilton circuit is $\mathcal{N} \mathcal{P}$ hard, this will imply that $\Delta \mathrm{TSP}$ is also $\mathcal{N} \mathcal{P}$-hard.
- Given an instance $G=(\mathcal{N}, \mathcal{E})$ of Hamilton circuit, with n nodes, we construct an instance of $\Delta \mathrm{TSP}$, again with n nodes:

$$
c_{i j}= \begin{cases}1, & \text { if }\{i, j\} \in E \\ 2, & \text { otherwise }\end{cases}
$$

We also let $L=n$.

- This is an instance of Δ TSP.
- The transformation can be carried out in polynomial time $\left[O\left(n^{2}\right)\right.$ time suffices].
- If we have a yes instance of Hamilton circuit, there exists a tour that uses the edges in \mathcal{E}. Since these edges are assigned unit cost, we obtain a tour of cost n, and we have a YES instance of Δ TSP.
- This argument can be reversed to show that if we have a YES instance of Δ TSP, then we also have a Yes instance of Hamilton circuit.

6 What if a problem is $\mathcal{N P}$-hard?

- $\mathcal{N} \mathcal{P}$-hardness is not a definite proof that no polynomial time algorithm exists. It is possible but unlikely that $\mathrm{BIO} \in \mathcal{P}$, and $\mathcal{P}=\mathcal{N} \mathcal{P}$. Nevertheless, $\mathcal{N} \mathcal{P}$-hardness suggests that we should stop searching for a polynomial time algorithm, unless we are willing to tackle the $\mathcal{P}=\mathcal{N} \mathcal{P}$ question.
- $\mathcal{N} \mathcal{P}$-hardness can be viewed as a limitation on what can be accomplished; very different from declaring the problem "intractable" and refraining from further work. Many $\mathcal{N} \mathcal{P}$-hard problems are routinely solved in practice. Even when solutions are approximate, without any quality guarantees, the results are often good enough to be useful in a practical setting.
- Not all $\mathcal{N} \mathcal{P}$-complete problems are equally hard. The knapsack problem can be solved in time $O\left(n^{2} c_{\text {max }}\right)$, exponential in the size $O\left(n\left(\log c_{\text {max }}+\log w_{\max }\right)+\right.$ $\log K)$ of the input data; the running time may be acceptable for the range of values of $c_{\text {max }}$ that arise in certain applications.
- In the knapsack problem, $\mathcal{N} \mathcal{P}$-hardness is only due to large numerical input data. Other problems, however, remain $\mathcal{N} \mathcal{P}$-hard even if the numerical data are restricted to take small values. The Δ TSP where the costs $c_{i j}$ are either 1 or 2 is $\mathcal{N} \mathcal{P}$-hard. Complexity due to combinatorial structure not numerical data.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

