15.083J/6.859J Integer Optimization

Lecture 2: Efficient Algorithms and Computational Complexity

1 Outline

- Efficient algorithms
- Complexity
- The classes \mathcal{P} and \mathcal{NP}
- The classes \mathcal{NP} -complete and \mathcal{NP} -hard
- What if a problem is \mathcal{NP} hard?

2 Efficient algorithms

- The LO problem
- $\begin{array}{ll} \min & \boldsymbol{c'x} \\ \text{s.t.} & \boldsymbol{Ax} = \boldsymbol{b} \\ & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$
- A LO instance
- A problem is a collection of instances

2.1 Size

- The **size** of an instance is the number of bits used to describe the instance, according to a prespecified format
- A number $r \leq U$

 $r = a_k 2^k + a_{k-1} 2^{k-1} + \dots + a_1 2^1 + a_0$

is represented by (a_0, a_1, \ldots, a_k) with $k \leq \lfloor \log_2 U \rfloor$

- Size of r is $\lfloor \log_2 U \rfloor + 2$
- Instance of LO: (c, A, b)
- Size is

$$(mn+m+n)(\lfloor \log_2 U \rfloor + 2)$$

- What is an instance of the Traveling Salesman Problem (TSP)?
- What is the size of such an instance?

SLIDE 2

SLIDE 1

2.2 Running Time

Let A be an algorithm which solves the optimization problem Π . If there exists a constant $\alpha > 0$ such that A terminates its computation after at most $\alpha f(|I|)$ elementary steps for each instance I(|I|) is the size of I), then A runs in O(f) time.

Elementary operations are

- variable assignments
 - random access to variables arithm
 - conditional jumps

A "brute force" algorithm for solving the min-cost flow problem:

Consider all spanning trees and pick the best tree solution among the feasible ones.

Suppose we had a computer to check 10^{15} trees in a second. It would need more than 10^9 years to find the best tree for a 25-node min-cost flow problem. It would need 10^{59} years for a 50-node instance.

That's not efficient!

Ideally, we would like to call an algorithm "efficient" when it is sufficiently fast to be usable in practice, but this is a rather vague and slippery notion.

The following notion has gained wide acceptance:

An algorithm is considered efficient if the number of steps it performs for any input is bounded by a polynomial function of the input size.

Polynomials are, e.g., n, n^3 , or $10^6 n^8$.

2.3 The Tyranny of Exponential Growth

	$100 n \log n$	$10 n^2$	$n^{3.5}$	2^n	n!	n^{n-2}
$10^9/\text{sec}$	$1.19 \cdot 10^9$	600,000	3,868	41	15	13
$10^{10}/{\rm sec}$	$1.08 \cdot 10^{10}$	1,897,370	7,468	45	16	13

Maximum input sizes solvable within one hour.

2.3.1 Pros of the Polynomial View

- Extreme rates of growth, such as n^{80} or $2^{n/100}$, rarely come up in practice.
- Asymptotically, a polynomial function always yields smaller values than any exponential function.
- Polynomial-time algorithms are in a better position to take advantage of technological improvements in the speed of computers.
- You can add two polynomials, multiply them, and compose them, and the result will still be a polynomial.

SLIDE 8

SLIDE 7

O(f)

SLIDE 4

SLIDE 6

• comparison of numbers

- arithmetic operations
- ··· Slide 5

$\mathbf{2.4}$ Punch line

The equation

efficient polynomial =

has been accepted as the best available way of tying the empirical notion of a "practical algorithm" to a precisely formalized mathematical concept.

2.5Definition

An algorithm runs in *polynomial time* if its running time is $O(|I|^k)$, where |I|is the input size, and all numbers in intermediate computations can be stored with $O(|I|^k)$ bits.

3 **Complexity Theory**

Recognition Problems 3.1

- A recognition problem is one that has a binary answer: YES or NO.
- Example: Is the value of an IO problem less than or equal to B?
- Example: Can a graph be colored with 4 colors?
- Example: Is a number *p* composite?

3.2**Transformations-reductions**

- Definition: Let Π_1 and Π_2 be two recognition problems. We say that Π_1 transforms to Π_2 in polynomial if there exist a polynomial time algorithm that given an instance I_1 of of problem Π_1 , outputs an instance I_2 of Π_2 with the property that I_1 is a YES instance of Π_1 if and only if I_2 is a YES instance of Π_2 .
- Suppose there exists an algorithm for some problem Π_1 that consists of a polynomial time computation in addition to a polynomial number of subroutine calls to an algorithm for problem Π_2 . We then say that problem Π_1 reduces (in polynomial time) to problem Π_2 .

3.3Properties

- Theorem: If problem Π_1 transforms to problem Π_2 in polynomial time, and if Π_2 is solvable in polynomial time, then Π_1 is also solvable in polynomial time.
- Interpretation: a) Π_1 is "no harder" than Π_2 ; b) Π_2 is "at least as hard" as Π_1 ; if there existed a polynomial time algorithm for Π_2 , then the same would be true for Π_1 .
- If we have some evidence that $\Pi_1 \notin \mathcal{P}$, a transformation of Π_1 to Π_2 would provide equally strong evidence that $\Pi_2 \notin \mathcal{P}$.
- Property: If problem problem Π_1 transforms to problem Π_2 and problem Π_2 transforms to problem Π_3 , then problem Π_1 transforms to problem Π_3 .

SLIDE 13

SLIDE 9

SLIDE 10

SLIDE 11

4 The classes \mathcal{P} - \mathcal{NP}

- A recognition problem Π is in \mathcal{P} if it is solvable in polynomial time.
- Is Ax = b, $x \ge 0$ feasible? It is in \mathcal{P} .
- A problem Π belongs to \mathcal{NP} if given an instance I of Π , there exists a certificate of size polynomial in the size of I, such that together with this certificate we can decide, whether I is a YES instance in polynomial time.
- BIO: is the problem $Ax \leq b, x \in \{0, 1\}^n$ feasible?
- Certificate: A feasible solution x_0 . We can check whether $Ax_0 \leq b$.
- TSP: Is there a tour of length less than or equal to L? Is $TSP \in \mathcal{NP}$?
- Property: $\mathcal{P} \subseteq \mathcal{NP}$.
- Open problem: Is $\mathcal{P} = \mathcal{NP}$?

5 The class \mathcal{NP} -complete

- A problem Π is \mathcal{NP} -complete if $\Pi \in \mathcal{NP}$ and all other problems in \mathcal{NP} polynomially reduce to it.
- Theorem: BIO is \mathcal{NP} -complete.
- Theorem: TSP is \mathcal{NP} -complete.
- A problem Π is $\mathcal{NP}\text{-hard}$ if all other problems in \mathcal{NP} polynomially reduce to it.
- A polynomial time algorithm for an \mathcal{NP} -hard problem would imply $\mathcal{P} = \mathcal{NP}$.
- Thousands of DOPs are *NP*-hard. Examples: knapsack, facility location, set covering, set packing, set partitioning, sequencing with setup times, and traveling salesman problems.

5.1 Proving \mathcal{NP} -hardness

- Theorem: Suppose that a problem Π_0 is \mathcal{NP} -hard and that Π_0 can be transformed (in polynomial time) to another problem Π . Then, Π is \mathcal{NP} -hard.
- Useful theorem as there are thousands of \mathcal{NP} -hard problems. Any one of these problems can play the role of Π_0 , and this provides us with a lot of latitude when attempting to prove \mathcal{NP} -hardness of a given problem Π .

SLIDE 17

SLIDE 16

• Given a problem Π whose \mathcal{NP} -hardness we wish to establish, we search for a known \mathcal{NP} -hard problem Π_0 that appears to be closely related to Π . We then attempt to construct a transformation of Π_0 to Π . Coming up with such transformations is mostly an art, based on ingenuity and experience, and there are very few general guidelines. SLIDE 14

5.2 Example

• Δ TSP: Given a complete undirected graph, a bound L and costs $c_{ij} = c_{ji}$:

$$c_{ij} \leq c_{ik} + c_{kj}, \quad \forall i, j, k$$

Does there exists a tour with cost less than or equal to L?

- Theorem: ΔTSP is \mathcal{NP} -complete.
- HAMILTON CIRCUIT: Given an undirected graph does there exists a tour?
- We transform HAMILTON CIRCUIT to Δ TSP. Since HAMILTON CIRCUIT is \mathcal{NP} -hard, this will imply that Δ TSP is also \mathcal{NP} -hard.
- Given an instance $G = (\mathcal{N}, \mathcal{E})$ of HAMILTON CIRCUIT, with *n* nodes, we construct an instance of Δ TSP, again with *n* nodes:

$$c_{ij} = \begin{cases} 1, & \text{if } \{i, j\} \in E, \\ 2, & \text{otherwise.} \end{cases}$$

We also let L = n.

- This is an instance of ΔTSP .
- The transformation can be carried out in polynomial time $[O(n^2)$ time suffices].

SLIDE 20

- If we have a YES instance of HAMILTON CIRCUIT, there exists a tour that uses the edges in \mathcal{E} . Since these edges are assigned unit cost, we obtain a tour of cost n, and we have a YES instance of Δ TSP.
- This argument can be reversed to show that if we have a YES instance of Δ TSP, then we also have a YES instance of HAMILTON CIRCUIT.

6 What if a problem is \mathcal{NP} -hard?

- \mathcal{NP} -hardness is not a definite proof that no polynomial time algorithm exists. It is possible but unlikely that BIO $\in \mathcal{P}$, and $\mathcal{P} = \mathcal{NP}$. Nevertheless, \mathcal{NP} -hardness suggests that we should stop searching for a polynomial time algorithm, unless we are willing to tackle the $\mathcal{P} = \mathcal{NP}$ question.
- \mathcal{NP} -hardness can be viewed as a limitation on what can be accomplished; very different from declaring the problem "intractable" and refraining from further work. Many \mathcal{NP} -hard problems are routinely solved in practice. Even when solutions are approximate, without any quality guarantees, the results are often good enough to be useful in a practical setting.
- SLIDE 22

SLIDE 21

- Not all \mathcal{NP} -complete problems are equally hard. The knapsack problem can be solved in time $O(n^2 c_{\max})$, exponential in the size $O(n(\log c_{\max} + \log w_{\max}) + \log K)$ of the input data; the running time may be acceptable for the range of values of c_{\max} that arise in certain applications.
- In the knapsack problem, \mathcal{NP} -hardness is only due to large numerical input data. Other problems, however, remain \mathcal{NP} -hard even if the numerical data are restricted to take small values. The Δ TSP where the costs c_{ij} are either 1 or 2 is \mathcal{NP} -hard. Complexity due to combinatorial structure not numerical data.

SLIDE 18

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.