2.098/6.255/15.093 - Recitation 10

Michael Frankovich and Shubham Gupta

December 4, 2009

1 Karush Kuhn Tucker Necessary Conditions

$$
\begin{array}{rrl}
\mathrm{P}: \quad \min & f(x) \\
& \\
\text { s.t. } & g_{j}(x) & \leq 0, \quad j=1, \ldots, p \\
& h_{i}(x) & =0, \quad i=1, \ldots, m
\end{array}
$$

Theorem. (KKT Necessary Conditions for Optimality)

If \hat{x} is local minimum of P and the following Constraint Qualification Condition (CQC) holds:

- The vectors $\nabla g_{j}(\hat{x}), j \in \mathcal{I}(\hat{x})$ and $\nabla h_{i}(\hat{x}), i=1, \ldots, m$, are linearly independent, where $\mathcal{I}(\hat{x})=\left\{j: g_{j}(\hat{x})=0\right\}$ is the set of indices corresponding to active constraints at \hat{x}.

Then, there exist vectors (u, v) s.t.:

1. $\nabla f(\hat{x})+\sum_{j=1}^{p} u_{j} \nabla g_{j}(\hat{x})+\sum_{i=1}^{m} v_{i} \nabla h_{i}(\hat{x})=0$
2. $u_{j} \geq 0, j=1, \ldots, p$
3. $u_{j} g_{j}(\hat{x})=0, j=1, \ldots, p$ (or equivalently $g_{j}(\hat{x})<0 \Rightarrow u_{j}=0, j=1, \ldots, p$)

Theorem. (KKT + Slater)

If \hat{x} is local minimum of P and the following Slater Condition holds:

- There exists some feasible solution \bar{x} such that $g_{j}(\bar{x})<0, \forall j \in \mathcal{I}(\hat{x})$, where $\mathcal{I}(\hat{x})=\left\{j: g_{j}(\hat{x})=0\right\}$ is the set of indices corresponding to active constraints at \hat{x}.

Then, there exist vectors (u, v) s.t.:

1. $\nabla f(\hat{x})+\sum_{j=1}^{p} u_{j} \nabla g_{j}(\hat{x})+\sum_{i=1}^{m} v_{i} \nabla h_{i}(\hat{x})=0$
2. $u_{j} \geq 0, j=1, \ldots, p$
3. $u_{j} g_{j}(\hat{x})=0, j=1, \ldots, p$ (or equivalently $g_{j}(\hat{x})<0 \Rightarrow u_{j}=0, j=1, \ldots, p$)

Example.

Solve

$$
\begin{aligned}
\min & x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \\
\text { s.t. } & x_{1}+x_{2}+x_{3} \leq-18
\end{aligned}
$$

Solution.

For some x to be a local minimum, condition (1) requires that $\exists u$ s.t. $2 x_{i}+u=0, i=$ $1,2,3$.

Now, the constraint can either be active or inactive:

- If it is inactive, then $u<0$ by condition (3). This would imply $x_{1}=x_{2}=x_{3}=0$, but $x=(0,0,0)^{\top}$ is infeasible, so this cannot be true of a local minimum.
- If it is active, then $x_{1}+x_{2}+x_{3}=-18$ and $2 x_{i}+u=0, i=1,2,3$. This is a system of four linear equations in four unknowns. We solve and obtain $u=$ $12, x=(-6,-6,-6)^{\top}$. Since $u=12 \geq 0$, there exists a u as desired. To check the regularity requirement, we simply confirm that $\nabla x=(1,1,1)^{\top} \neq 0$. Also, we could have checked that the Slater condition is satisfied (eg use $\bar{x}=(-10,-10,-10)^{\top}$).

Hence $(-6,-6,-6)^{\top}$ is the only candidate for a local minimum. Now, the question is: is it a local minimum? (Note that since this is the unique candidate, this is the same as asking if the function has a local minimum over the set.)

Observe that the objective function is convex. Why? Because it is a positive combination of convex functions. Now, is the feasible set convex? Answer: yes, since it is of the form $\left\{x \in \mathbb{R}^{n}: f(x) \leq 0\right\}$, where f is a convex function.

So we may apply a stronger version of the KKT condtions, the KKT sufficient conditions, which imply that any x which satisfies the KKT necessary conditions and also meets these two convexity requirements is in fact a global minimum.

So the point $x=(-6,-6,-6)^{\top}$ is the unique global minimum (unique since it was the only candidate).

Example. ${ }^{1}$

Solve

$$
\begin{array}{rr}
\min & -\log \left(x_{1}+1\right)-x_{2} \\
\text { s.t. } & g(x) \triangleq 2 x_{1}+x_{2}-3 \\
& \leq 0 \\
x_{1}, x_{2} & \geq 0
\end{array}
$$

[^0]
Solution.

Firstly, observe that this is a convex optimization problem, since $f(x)$ is convex (a positive combination of the convex functions $-x_{2}$ and $-\log \left(x_{1}+1\right)$), and the constraint functions $g(x),-x_{1}$ and $-x_{2}$ are convex (again, this is required for the feasible space to be convex, since we have \leq constraints). Alternatively, in this case we can see that the feasible space is a polyhedron, which we know to be convex.

Now, in order to use KKT, we need to assume which inequalities are active. Let's start by assuming that at a local minimum x, only $g(x) \leq 0$ is active. This leads to the system: $\left[\begin{array}{c}\frac{-1}{x_{1}+1} \\ -1\end{array}\right]+u\left[\begin{array}{l}2 \\ 1\end{array}\right]=0$, which gives $u=1$ and $x_{1}=-0.5$, which is not feasible, so our assumption cannot be correct.

Now try assuming $g(x) \leq 0$ and $-x_{1} \leq 0$ are active, giving the system $\left[\begin{array}{c}\frac{-1}{x_{1}+1} \\ -1\end{array}\right]+u_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+$ $u_{2}\left[\begin{array}{c}-1 \\ 0\end{array}\right]=0$, which gives $u_{1}=1, u_{2}=1$ and $x_{2}=3$ (recall we assumed $x_{1}=0$).
Now since it's a convex optimization problem, and the Slater condition is trivially satisfied, this is a global minimum by the KKT sufficient conditions.

Example.

The following example shows that the KKT theorem may not hold if the regularity condition is violated: Consider

$$
\begin{array}{cc}
\min & x_{1}+x_{2} \\
\text { s.t. } & \left(x_{1}-1\right)^{2}+x_{2}^{2}-1=0 \\
& \left(x_{1}-3\right)^{2}+x_{2}^{2}-9=0
\end{array}
$$

The feasible region is the intersection of two circles, one centered at the point $(1,0)$ with radius 1 , the other at the point $(3,0)$ with radius 3 . The intersection occurs at the origin, which is the optimal solution by inspection.

We have $\nabla f(\hat{x})=(1,1)^{\top}, \nabla h_{1}(\hat{x})=\left(2 x_{1}-2,2 x_{2}\right)^{\top}=(-2,0)^{\top}$, and $\nabla h_{1}(\hat{x})=\left(2 x_{1}-\right.$ $\left.6,2 x_{2}\right)^{\top}=(-6,0)^{\top}$. So condition (1) cannot hold.

2 Conjugate Gradient Method ${ }^{2}$

Consider minimizing the quadratic function $f(x)=\frac{1}{2} x^{\top} Q x+c^{\top} x$.

1. $d_{1}, d_{2}, \ldots, d_{m}$ are Q -conjugate if

$$
d_{i}^{\top} Q d_{j}=0, \forall i \neq j
$$

[^1]2. Let x_{0} be our initial point.
3. Direction $d_{1}=-\nabla f\left(x_{0}\right)$.
4. Direction $d_{k+1}=-\nabla f\left(x_{k+1}\right)+\lambda_{k} d_{k}$, where $\lambda_{k}=\frac{\nabla f\left(x_{k+1}\right)^{\top} d_{k}}{d_{k}^{\top} Q d_{k}}$ in the quadratic case (and $\lambda_{k}=\frac{\left\|\nabla f\left(x_{k+1}\right)\right\|^{2}}{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}$ in the general case). It turns out that with each d_{k} constructed in this way, $d_{1}, d_{2}, \ldots, d_{k}$ are \mathbf{Q}-conjugate.
5. By Expanding Subspace Theorem, x_{k+1} minimizes $f(x)$ over the affine subspace $S=x_{0}+\operatorname{span}\left\{d_{1}, d_{2} \ldots, d_{k}\right\}$.
6. Hence finite convergence (n steps).

3 Barrier Methods

A barrier function $G_{(x)}$, is a continuous function with the propertiy that it approaches ∞ as one of the $g_{j}(x)$ approaches 0 from below.

Examples:

$$
-\sum_{j=1}^{p} \log \left[-g_{j}(x)\right] \quad \text { and } \quad-\sum_{j=1}^{p} \frac{1}{g_{j}(x)}
$$

Consider the primal/dual pair of linear optimization problems
$\mathrm{P}: \min c^{\top} x$
s.t. $A x=b$
s.t. $\quad x \geq 0$
D: $\max \quad b^{\top} p$
s.t. $A^{\top} p+s=c$
s.t. $\quad s \geq 0$

To solve P , we define the following barrier problem:

$$
\begin{array}{ccc}
\mathrm{BP}: \quad \min & B_{\mu}(x) \triangleq & c^{\top} x-\mu \sum_{j=1}^{n} \log x_{j} \\
\text { s.t. } & A x=b
\end{array}
$$

Assume that for all $\mu>0$, BP has an optimal solution $x(\mu)$. This optimum will be unique. Why?

As μ varies, the $x(\mu)$ form what is called the central path.
Theorem. $\lim _{\mu \rightarrow 0} x(\mu)$ exists and $x^{*}=\lim _{\mu \rightarrow 0} x(\mu)$ is an optimal solution to P.
Then the barrier problem from the dual problem is
$\mathrm{BD}: \quad \max \quad b^{\top} p+\mu \sum_{j=1}^{n} \log s_{j}$
s.t. $A^{\top} p+s=c$

Theorem. Let $\mu>0$. Then $x(\mu), s(\mu), p(\mu)$ are optimal solutions to BP and BD if and only if the following hold:

$$
\begin{aligned}
A x(\mu) & =b \\
x(\mu) & \geq 0 \\
A^{\top} p(\mu)+s(\mu) & =c \\
s(\mu) & \geq 0 \\
x_{j}(\mu) s_{j}(\mu) & =\mu, \forall j
\end{aligned}
$$

To solve BP using the Primal path following algorithm, we:

1. Start with a feasible interior point solution $x_{0}>0$
2. Step in the Newton direction $d(\mu)=\left(I-X^{2} A^{\top}\left(A X^{2} A^{\top}\right)^{-1} A\right)\left(X e-\frac{1}{\mu} X^{2} c\right)$
3. Decrement μ
4. Iterate until convergence is obtained (complementary slackness above is ϵ-satisfied)

Note if we were to fix μ and carry out several Newton steps, then x would converge to $x(\mu)$. By taking a single step in the Newton direction we can guarantee that x stays "close to" $x(\mu)$, i.e. the central path. Hence following the iterative Primal path following algorithm we will converge to an optimal solution by this result and the first theorem above.

MIT OpenCourseWare
http://ocw.mit.edu

15.093J / 6.255J Optimization Methods

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Thanks to Andy Sun.

[^1]: ${ }^{2}$ Thanks to Allison Chang for notes

