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1 Dynamic Programming 

The number of crimes in 3 areas of a city as a function of the number of police patrol 
cars assigned there is indicated in the following table: 

n 0 1 2 3 
Area 1 14 10 7 4 
Area 2 25 19 16 14 
Area 3 20 14 11 8 

We have a total of only 3 police cars to assign. Solve the problem of minimizing the 
total number of crimes in the city by assigning patrol cars using dynamic programming. 

Solution. 
Firstly, we define the following elements of our dynamic program. We let N = 3, so we 
have 4 stages. At k = 0, we assign some number of cars to area 1, then we are finished 
with area 1. Then at stage k = 1 we assign from our remaining cars some number to 
area 2, and so on. At k = N = 3, we are done and any leftover cars have no cost. 

1. State xk = number of patrol cars available at stage k; 

2. Control uk = number of patrol cars to assign at stage k to area k + 1; 

3. Randomness ωk constant; 

4. Dynamics: xk+1 = xk − uk; 

5. Boundary Conditions: JN(xN) = 0, ∀xN ; 

6. Recursion: Jk(xk) = min gk(xk, uk, ωk) + Jk(xk+1) = min gk(xk, uk) + Jk(xk − uk) . 
uk∈Uk uk∈Uk 
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J2(x2) = min g2(x2, u2) + 0 
u2∈{0,...,x2} 

= J2()
⊤ = [20, 14, 11, 8] (ie notation for J2(0) = 20, J2(1) = 14, etc).⇒

J1(x1) = min g1(x1, u1) + J2(x1 − u1) 
u1∈{0,...,x1} 

= J1()
⊤ = [25 + 20, min{25 + 14, 19 + 20}, min{25 + 11, 19 + 14, 16 + 20},⇒

min{25 + 8, 19 + 11, 16 + 14, 14 + 20}] 
= [45, 39, 33, 30]. 

J0(3) = min g0(x0, u0) + J1(x0 − u0) 
u0∈{0,...,3} 

= min{14 + 30, 10 + 33, 7 + 39, 4 + 45} = 43. 

So the optimal cost is 43 crimes. Tracing the argminima, we see that the optimal solution 
is to assign one car to each of the three areas. 

2 Linear Algebra/Calculus Review for NLP 

Definition. A norm � · � on Rn is a mapping from Rn to R that satisfies: 

a) �x� ≥ 0, ∀x ∈ R
n , 

b) �cx� = |c| · �x�, ∀c ∈ R, ∀x ∈ R
n , 

c) �x� = 0 x = 0,⇐⇒


d) �x + y� ≤ �x� + �y�, ∀x, y ∈ R
n .


The following are common norms: 
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The Euclidean Norm (or L2-norm): �x�2 = 
√

x x = • ⊤
�

i

n 

=1 xi 
2 2 ; 

• The L1-norm: �x�1 = i

n 

=1 |xi|; 
1 

• The p-norm (p ≥ 1): �x�p = n |xi|p p (L1 and L2 are p-norms); i=1 

• The L∞-norm (or max norm): �x�∞ = max |x1|, . . . , |xn| . 

Let A be a real-valued symmetric (i.e. A = A⊤) n n matrix. Then: ×

• Its eigenvalues are real. 

• The following are equivalent: 
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a) A is positive definite.


b) All eigenvalues of A are > 0.


c) x⊤Ax > 0, ∀x ∈ R
n \ {0}.


•	 The following are equivalent:


a) A is positive semi-definite.


b) All eigenvalues of A are ≥ 0.


c) x⊤Ax ≥ 0, ∀x ∈ R
n .


Definition. Let f : Rn 
R. Then, when they exist, →

∂f f(x+αei)−f(x) •	
∂xi 

= limα→0 α 
is the ith partial derivative of f at x. 

	 

∂f


∂x1


f(x) = 


 

... 


 
is the gradient of f at x.• ▽

∂f


∂xn


	  

∂2f ∂2f 

∂x2 . . . 
∂x1xn1 

	  

2f(x) =  .
.. . . . .

..  is the hessian of f at x. 
	  

•	 ▽ 
∂2f ∂2f . . . 

∂xnx1 ∂x2 
n 

3 How to determine whether a function is convex 

Once we know a few basic classes of convex functions, we can use the following facts: 

Linear functions f(x) = a⊤x + b are convex. • 

Quadratic functions f(x) = 1 x ⊤Qx + b⊤ x are convex if Q is PSD (positive semi•	
2 

definite). 

•	 Norms are convex functions (the proof is left an exercise, using the properties of 
norms defined above). 

•	 g(x) = 
�

i

k 

=1 aifi(x) is convex if ai ≥ 0, fi convex, ∀i ∈ {1, . . . , k}. 

Alternatively, if a function is differentiable, we can use the following facts: 

• ▽ 2f(x) is PSD ∀x = ⇒ f is convex. 

• ▽ 2f(x) is PD (positive definite) ∀x = ⇒ f is strictly convex. 
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Finally, if the function is not differentiable and we cannot use one of the above ap
proaches, we check the definition of convexity: 

Definition. A function f : Rn 
R is convex if ∀x, y ∈ R

n, we have →

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y), ∀λ ∈ [0, 1]. 

3.1 Example 

Let f : Rn 
R, (x1, x2) �→ x1x

2
2 − x1. So →

x 
f(x) = 2

2 − 1 
,• ▽

2x1x2 

2f(x) =
0 2x2 

.• ▽ 
2x2 2x1 

To solve for the eigenvalues of the hessian, we get the following quadratic in λ: 

det 
� 

2 f(x) 
� 

= det 
−λ 2x2 = 0,▽ 
2x2 2x1 − λ 

λ2 − 2x1λ − 4x 22 = 0. 

Since the constant term is negative, we cannot have two roots (i.e. eigenvalues) of the 
same sign. Hence f can be neither convex nor concave. 
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