2.098/6.255/15.093 - Recitation 8

Michael Frankovich and Shubham Gupta

November 13, 2009

1 Dynamic Programming

The number of crimes in 3 areas of a city as a function of the number of police patrol cars assigned there is indicated in the following table:

n	0	1	2	3
Area 1	14	10	7	4
Area 2	25	19	16	14
Area 3	20	14	11	8

We have a total of only 3 police cars to assign. Solve the problem of minimizing the total number of crimes in the city by assigning patrol cars using dynamic programming.

Solution.

Firstly, we define the following elements of our dynamic program. We let $N=3$, so we have 4 stages. At $k=0$, we assign some number of cars to area 1 , then we are finished with area 1 . Then at stage $k=1$ we assign from our remaining cars some number to area 2 , and so on. At $k=N=3$, we are done and any leftover cars have no cost.

1. State $x_{k}=$ number of patrol cars available at stage k;
2. Control $u_{k}=$ number of patrol cars to assign at stage k to area $k+1$;
3. Randomness ω_{k} constant;
4. Dynamics: $x_{k+1}=x_{k}-u_{k}$;
5. Boundary Conditions: $J_{N}\left(x_{N}\right)=0, \quad \forall x_{N}$;
6. Recursion: $J_{k}\left(x_{k}\right)=\min _{u_{k} \in \mathcal{U}_{k}}\left[g_{k}\left(x_{k}, u_{k}, \omega_{k}\right)+J_{k}\left(x_{k+1}\right)\right]=\min _{u_{k} \in \mathcal{U}_{k}}\left[g_{k}\left(x_{k}, u_{k}\right)+J_{k}\left(x_{k}-u_{k}\right)\right]$.

$$
\begin{aligned}
J_{2}\left(x_{2}\right) & =\min _{u_{2} \in\left\{0, \ldots, x_{2}\right\}}\left[g_{2}\left(x_{2}, u_{2}\right)+0\right] \\
\Longrightarrow J_{2}()^{\top} & \left.=[20,14,11,8] \text { (ie notation for } J_{2}(0)=20, J_{2}(1)=14, \text { etc }\right) . \\
J_{1}\left(x_{1}\right) & =\min _{u_{1} \in\left\{0, \ldots, x_{1}\right\}}\left[g_{1}\left(x_{1}, u_{1}\right)+J_{2}\left(x_{1}-u_{1}\right)\right] \\
\Longrightarrow J_{1}()^{\top} & =[25+20, \min \{25+14,19+20\}, \min \{25+11,19+14,16+20\}, \\
& \min \{25+8,19+11,16+14,14+20\}] \\
& =[45,39,33,30] . \\
J_{0}(3) & =\min _{u_{0} \in\{0, \ldots, 3\}}\left[g_{0}\left(x_{0}, u_{0}\right)+J_{1}\left(x_{0}-u_{0}\right)\right] \\
& =\min \{14+30,10+33,7+39,4+45\}=43 .
\end{aligned}
$$

So the optimal cost is 43 crimes. Tracing the argminima, we see that the optimal solution is to assign one car to each of the three areas.

2 Linear Algebra/Calculus Review for NLP

Definition. A norm $\|\cdot\|$ on \mathbb{R}^{n} is a mapping from \mathbb{R}^{n} to \mathbb{R} that satisfies:
a) $\|x\| \geq 0, \quad \forall x \in \mathbb{R}^{n}$,
b) $\|c x\|=|c| \cdot\|x\|, \quad \forall c \in \mathbb{R}, \quad \forall x \in \mathbb{R}^{n}$,
c) $\|x\|=0 \Longleftrightarrow x=0$,
d) $\|x+y\| \leq\|x\|+\|y\|, \quad \forall x, y \in \mathbb{R}^{n}$.

The following are common norms:

- The Euclidean Norm (or L_{2}-norm): $\|x\|_{2}=\sqrt{x^{\top} x}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$;
- The L_{1}-norm: $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$;
- The p-norm $(p \geq 1):\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$ (L_{1} and L_{2} are p-norms);
- The L_{∞}-norm (or max norm): $\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$.

Let A be a real-valued symmetric (i.e. $A=A^{\top}$) $n \times n$ matrix. Then:

- Its eigenvalues are real.
- The following are equivalent:
a) A is positive definite.
b) All eigenvalues of A are >0.
c) $x^{\top} A x>0, \quad \forall x \in \mathbb{R}^{n} \backslash\{0\}$.
- The following are equivalent:
a) A is positive semi-definite.
b) All eigenvalues of A are ≥ 0.
c) $x^{\top} A x \geq 0, \quad \forall x \in \mathbb{R}^{n}$.

Definition. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Then, when they exist,

- $\frac{\partial f}{\partial x_{i}}=\lim _{\alpha \rightarrow 0} \frac{f\left(x+\alpha e_{i}\right)-f(x)}{\alpha}$ is the $i^{\text {th }}$ partial derivative of f at x.
- $\nabla f(x)=\left[\begin{array}{c}\frac{\partial f}{\partial x_{1}} \\ \vdots \\ \frac{\partial f}{\partial x_{n}}\end{array}\right]$ is the gradient of f at x.
$\bullet \nabla^{2} f(x)=\left[\begin{array}{ccc}\frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}\end{array}\right]$ is the hessian of f at x.

3 How to determine whether a function is convex

Once we know a few basic classes of convex functions, we can use the following facts:

- Linear functions $f(x)=a^{\top} x+b$ are convex.
- Quadratic functions $f(x)=\frac{1}{2} x^{\top} Q x+b^{\top} x$ are convex if Q is PSD (positive semidefinite).
- Norms are convex functions (the proof is left an exercise, using the properties of norms defined above).
- $g(x)=\sum_{i=1}^{k} a_{i} f_{i}(x)$ is convex if $a_{i} \geq 0, f_{i}$ convex, $\forall i \in\{1, \ldots, k\}$.

Alternatively, if a function is differentiable, we can use the following facts:

- $\nabla^{2} f(x)$ is PSD $\forall x \Longrightarrow \mathrm{f}$ is convex.
- $\nabla^{2} f(x)$ is PD (positive definite) $\forall x \Longrightarrow \mathrm{f}$ is strictly convex.

Finally, if the function is not differentiable and we cannot use one of the above approaches, we check the definition of convexity:

Definition. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if $\forall x, y \in \mathbb{R}^{n}$, we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y), \quad \forall \lambda \in[0,1] .
$$

3.1 Example

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R},\left(x_{1}, x_{2}\right) \mapsto x_{1} x_{2}^{2}-x_{1}$. So

- $\nabla f(x)=\left[\begin{array}{l}x_{2}^{2}-1 \\ 2 x_{1} x_{2}\end{array}\right]$,
- $\nabla^{2} f(x)=\left[\begin{array}{cc}0 & 2 x_{2} \\ 2 x_{2} & 2 x_{1}\end{array}\right]$.

To solve for the eigenvalues of the hessian, we get the following quadratic in λ :

$$
\begin{aligned}
\operatorname{det}\left(\nabla^{2} f(x)\right)=\operatorname{det}\left[\begin{array}{cc}
-\lambda & 2 x_{2} \\
2 x_{2} & 2 x_{1}-\lambda
\end{array}\right] & =0 \\
\lambda^{2}-2 x_{1} \lambda-4 x_{2}^{2} & =0 .
\end{aligned}
$$

Since the constant term is negative, we cannot have two roots (i.e. eigenvalues) of the same sign. Hence f can be neither convex nor concave.

MIT OpenCourseWare
http://ocw.mit.edu

15.093J / 6.255J Optimization Methods

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

