15.093 Optimization Methods

Lecture 16: Dynamic Programming

1 Outline

1. The knapsack problem
2. The traveling salesman problem
3. The general DP framework
4. Bellman equation
5. Optimal inventory control
6. Optimal trading
7. Multiplying matrices

2 The Knapsack problem

$$
\begin{aligned}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} w_{j} x_{j} \leq K \\
& x_{j} \in\{0,1\}
\end{aligned}
$$

Define

$$
\begin{aligned}
C_{i}(w)=\text { maximize } & \sum_{j=1}^{i} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{i} w_{j} x_{j} \leq w \\
& x_{j} \in\{0,1\}
\end{aligned}
$$

2.1 A DP Algorithm

- $C_{i}(w)$: the maximum value that can be accumulated using some of the first i items subject to the constraint that the total accumulated weight is equal to w
- Recursion

$$
C_{i+1}(w)=\max \left\{C_{i}(w), C_{i}\left(w-w_{i+1}\right)+c_{i+1}\right\}
$$

- By considering all states of the form (i, w) with $w \leq K$, algorithm has complexity $O(n K)$

3 The TSP

- $G=(V, A)$ directed graph with n nodes
- $c_{i j}$ cost of $\operatorname{arc}(i, j)$
- Approach: choice of a tour as a sequence of choices
- We start at node 1 ; then, at each stage, we choose which node to visit next.
- After a number of stages, we have visited a subset S of V and we are at a current node $k \in S$

3.1 A DP algorithm

- $C(S, k)$ be the minimum cost over all paths that start at node 1, visit all nodes in the set S exactly once, and end up at node k
- (S, k) a state; this state can be reached from any state of the form $(S \backslash$ $\{k\}, m)$, with $m \in S \backslash\{k\}$, at a transition cost of $c_{m k}$
- Recursion

$$
\begin{gathered}
C(S, k)=\min _{m \in S \backslash\{k\}}\left(C(S \backslash\{k\}, m)+c_{m k}\right), \quad k \in S \\
C(\{1\}, 1)=0 .
\end{gathered}
$$

- Length of an optimal tour is

$$
\min _{k}\left(C(\{1, \ldots, n\}, k)+c_{k 1}\right)
$$

- Complexity: $O\left(n^{2} 2^{n}\right)$ operations

4 Guidelines for constructing DP Algorithms

- View the choice of a feasible solution as a sequence of decisions occurring in stages, and so that the total cost is the sum of the costs of individual decisions.
- Define the state as a summary of all relevant past decisions.
- Determine which state transitions are possible. Let the cost of each state transition be the cost of the corresponding decision.
- Write a recursion on the optimal cost from the origin state to a destination state.

The most crucial step is usually the definition of a suitable state.

5 The general DP framework

- Discrete time dynamic system described by state x_{k}, k indexes time.
- u_{k} control to be selected at time $k . u_{k} \in U_{k}\left(x_{k}\right)$.
- w_{k} randomness at time k
- N time horizon
- Dynamics:

$$
x_{k+1}=f_{k}\left(x_{k}, u_{k}, w_{k}\right)
$$

- Cost function: additive over time

$$
E\left(g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)
$$

5.1 Inventory Control

- x_{k} stock available at the beginning of the k th period
- u_{k} stock ordered at the beginning of the k th period
- w_{k} demand duirng the k th period with given probability distribution. Excess demand is backloged and filled as soon as additional inventory is available.
- Dynamics

$$
x_{k+1}=x_{k}+u_{k}-w_{k}
$$

- Cost

$$
E\left(R\left(x_{N}\right)+\sum_{k=0}^{N-1}\left(r\left(x_{k}\right)+c u_{k}\right)\right)
$$

6 The DP Algorithm

- Define $J_{k}\left(x_{k}\right)$ to be the expected optimal cost starting from stage k at state x_{k}.
- Bellman's principle of optimality

$$
\begin{gathered}
J_{N}\left(x_{N}\right)=g_{N}\left(x_{N}\right) \\
\min _{k}\left(x_{k}\right)= \\
\min _{k} \in U_{k}\left(x_{k}\right) \\
E_{w_{k}}\left\{g_{k}\left(x_{k}, u_{k}, w_{k}\right)+J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right\}
\end{gathered}
$$

- Optimal expected cost for the overall problem: $J_{0}\left(x_{0}\right)$.

7 Inventory Control

- If $r\left(x_{k}\right)=a x_{k}^{2}, w_{k} \sim N\left(\mu_{k}, \sigma_{k}^{2}\right)$, then

$$
u_{k}^{*}=c_{k} x_{k}+d_{k}, \quad J_{k}\left(x_{k}\right)=b_{k} x_{k}^{2}+f_{k} x_{k}+e_{k}
$$

- If $r\left(x_{k}\right)=p \max \left(0,-x_{k}\right)+h \max \left(0, x_{k}\right)$, then there exist S_{k} :

$$
u_{k}^{*}= \begin{cases}S_{k}-x_{k} & \text { if } x_{k}<S_{k} \\ 0 & \text { if } x_{k} \geq S_{k}\end{cases}
$$

8 Optimal trading

- \bar{S} shares of a stock to be bought within a horizon T.
- $t=1,2, \ldots, T$ discrete trading periods.
- Control: S_{t} number of shares acquired in period t at price $P_{t}, t=1,2, \ldots, T$
- Objective: $\quad \min E\left[\sum_{t=1}^{T} P_{t} S_{t}\right]$

$$
\text { s.t. } \sum_{t=1}^{T} S_{t}=\bar{S}
$$

- Dynamics:

$$
P_{t}=P_{t-1}+\alpha S_{t}+\epsilon_{t}
$$

where $\alpha>0, \epsilon_{t} \sim N(0,1)$

8.1 DP ingredients

- State: $\left(P_{t-1}, W_{t}\right)$
P_{t-1} price realized at the previous period
$W_{t} \#$ of shares remaining to be purchased
- Control: S_{t} number of shares purchased at time t
- Randomness: ϵ_{t}
- Objective: $\min E\left[\sum_{t=1}^{T} P_{t} S_{t}\right]$
- Dynamics: $P_{t}=P_{t-1}+\alpha S_{t}+\epsilon_{t} W_{t}=W_{t-1}-S_{t-1}, \quad W_{1}=$ $\bar{S}, \quad W_{T+1}=0$
Note that $W_{T+1}=0$ is equivalent to the constraint that \bar{S} must be executed by period T

8.2 The Bellman Equation

$$
\begin{gathered}
J_{t}\left(P_{t-1}, W_{t}\right)=\min _{S_{t}} E_{t}\left[P_{t} S_{t}+J_{t+1}\left(P_{t}, W_{t+1}\right)\right] \\
J_{T}\left(P_{T-1}, W_{T}\right)= \\
\min _{S_{T}} E_{T}\left[P_{T} W_{T}\right]=\left(P_{T-1}+\alpha W_{T}\right) W_{T}
\end{gathered}
$$

Since $W_{T+1}=0 \Rightarrow S_{T}^{*}=W_{T}$

8.3 Solution

$$
\begin{gathered}
=\min _{S_{T-1}} E_{T-1}\left[P_{T-1} S_{T-1}+J_{T}\left(P_{T-1}, W_{T}\right)\right] \\
=\min _{S_{T-1}} E_{T-1}\left[\left(P_{T-2}+\alpha S_{T-1}+\epsilon_{T-1}\right) S_{T-1}+\right. \\
\left.J_{T}\left(P_{T-2}+\alpha S_{T-1}+\epsilon_{T-1}, W_{T-1}-S_{T-1}\right)\right] \\
S_{T-1}^{*}=\frac{W_{T-1}}{2} \\
J_{T-1}\left(P_{T-2}, W_{T-1}\right)=W_{T-1}\left(P_{T-2}+\frac{3}{4} \alpha W_{T-1}\right)
\end{gathered}
$$

Continuing in this fashion,

$$
\begin{aligned}
& S_{T-k}^{*}=\frac{W_{T-k}}{k+1} \\
& J_{T-k}\left(P_{T-k-1}, W_{T-k}\right)=W_{T-k}\left(P_{T-k-1}+\frac{k+2}{2(k+1)} \alpha W_{T-k}\right) \\
& S_{1}^{*}=\frac{\bar{S}}{T} \\
& J_{1}\left(P_{0}, W_{1}\right)=P_{0} \bar{S}+\frac{\alpha \bar{S}^{2}}{2}\left(1+\frac{1}{T}\right) \\
& S_{1}^{*}=S_{2}^{*}=\cdots=S_{T}^{*}=\frac{\bar{S}}{T}
\end{aligned}
$$

8.4 Different Dynamics

$$
\begin{aligned}
& P_{t}=P_{t-1}+\alpha S_{t}+\gamma X_{t}+\epsilon_{t} \quad, \quad \alpha>0 \\
& X_{t}=\rho X_{t-1}+\eta_{t} \quad, \quad X_{1}=1 \quad, \quad \rho \in(-1,1)
\end{aligned}
$$

where $\epsilon_{t} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$ and $\eta_{t} \sim N\left(0, \sigma_{\eta}^{2}\right)$

8.5 Solution

$$
\begin{aligned}
& S_{T-k}^{*}= \frac{W_{T-k}}{k+1}+\frac{\rho b_{k-1}}{2 a_{k-1}} X_{T-k} \\
& J_{T-k}\left(P_{T-k-1}, X_{T-k}, W_{T-k}\right)= P_{T-k-1} W_{T-k}+a_{k} W_{T-k}^{2}+ \\
& b_{k} X_{T-k} W_{T-k}+c_{k} X_{T-k}^{2}+d_{k}
\end{aligned}
$$

for $k=0,1, \ldots, T-1$, where:

$$
\begin{array}{lll}
a_{k}=\frac{\alpha}{2}\left(1+\frac{1}{k+1}\right), & a_{0}=\alpha \\
b_{k}=\gamma+\frac{\alpha \rho b_{k-1}}{2 a_{k-1}}, & b_{0}=\gamma \\
c_{k}=\rho^{2} c_{k-1}-\frac{\rho^{2} b_{k-1}^{2}}{4 a_{k-1}}, & c_{0}=0 \\
d_{k}=d_{k-1}+c_{k-1} \sigma_{\eta}^{2}, & d_{0}=0
\end{array}
$$

9 Matrix multiplication

- Matrices: $M_{k}: n_{k} \times n_{k+1}$
- Objective: Find $M_{1} \cdot M_{2} \cdots M_{N}$
- Example: $M_{1} \cdot M_{2} \cdot M_{3} ; M_{1}: 1 \times 10, M_{2}: 10 \times 1, M_{3}: 1 \times 10$.
$M_{1}\left(M_{2} M_{3}\right) 200$ multiplications;
$\left(M_{1} M_{2}\right) M_{3} 20$ multiplictions.
- What is the optimal order for performing the multiplication?
- $m(i, j)$ optimal number of scalar multiplications for multiplying $M_{i} \ldots M_{j}$.
- $m(i, i)=0$
- For $i<j$:

$$
m(i, j)=\min _{i \leq k<j}\left(m(i, k)+m(k+1, j)+n_{i} n_{k+1} n_{j+1}\right)
$$

MIT OpenCourseWare
http://ocw.mit.edu

15.093J / 6.255J Optimization Methods

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

