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Final exam


Date Given: December 17th, 2008

Date Due: You have three hours (academic time, 170 minutes) to complete the exam.


P1.	 [30 pts] Classify the following statements as true or false. All answers must be 
well-justified, either through a short explanation, or a counterexample. Unless stated 
otherwise, all LP problems are in standard form. 

(a)	 Assume Q is positive definite. Then, if two vectors are Q-conjugate then they 
are orthogonal. 

(b)	 For a uncapacitated min-cost flow problem specified by integer data, there always 
exist integer optimal flows. 

(c)	 For a quadratic function, the steepest descent method (with exact line search) 
converges quadratically. 

(d)	 For the problem 

minimize x subject to y ≤ x 3 , y ≥ 0, 

the gradients of the constraints satisfy the linear independence constraint qual
ification (LICQ). 

(e)	 For an integer program, the value obtained by Lagrangean relaxation is never 
worse than that obtained by the LP relaxation. 

(f)	 If f(x) and g(x) are convex univariate functions, then so is 2f(x) − 3g(x). 
(g)	 For unconstrained minimization of a differentiable function, the condition 

�f(x) = 0 is necessary for global optimality. 
(h)	 For a constrained optimization problem, if a point x̄ is feasible and satisfies the 

KKT conditions, then it is a local minimum. 
(i)	 If all the reduced costs are nonnegative, then the current basis is dual feasible. 
(j)	 If the set {x ∈ Rn : f(x) ≤ 0} is convex, then the function f(x) is convex. 
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Solution: (a) FALSE. A simple counterexample is � � � � � � 

Q = 
1 
1 

1 
2 

, v1 = 
1 
0 

, v2 = 
1 
−1 

. 

The matrix Q is positive definite, we have v1
�Qv2 = 0 (they are Q-conjugate), but v1 

and v2 are not orthogonal. 
(b)	 TRUE. If the problem is bounded below, this is a consequence of the fact that BFSs 

correspond to tree solutions. 
(c)	 FALSE. The steepest descent method has linear convergence, not quadratic. 
(d)	 FALSE. The only local minimum is (0, 0). At this point, the gradient of the constraints 

are linearly dependent. 
(e)	 TRUE. This is essentially Theorem 11.4 in the book, and was covered in Lecture 14. 

It follows directly from the fact that the feasible set of the Lagrangean relaxation is a 
subset of that of the LP relaxation. 

(f)	 FALSE. Just take for instance f(x) = 0, g(x) = x2 . Then f(x) − g(x) = −3x2, which is 
not convex. 

(g)	 TRUE. The vanishing gradient condition ensures that small perturbations cannot de
crease the optimal value (up to linear terms). 

(h)	 FALSE. Since the KKT are essentially first-order conditions, they can only “see” the 
linear part of the objective and constraints, and are thus unable to ensure even local 
optimality (unless further conditions, such as convexity, are imposed). As a simple 
example, consider the objective function f(x) := −x2, and the feasible set defined by 
g(x) := x ≤ 0. Clearly, the origin x = 0 is a KKT point (since �f(x) + u1 · �g(x) = 
0 + 0 1 = 0), but it is a local maximum (not a minimum). · 

(i)	 TRUE. Dual feasibility is equivalent to the nonnegativity of the reduced costs. 
(j)	 FALSE. Consider for instance the univariate function f(x) = x4 − x2 − �, for some small 

� > 0 (plot it!). The sublevel set {x ∈ R : f(x) ≤ 0} is a closed interval (and thus 
convex) but the function is not convex (the Hessian at the origin is negative definite). 
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P2.	 [25 pts] This problem is about finding the largest Euclidean ball contained inside a 
given polyhedron. Consider a (nonempty) polyhedron P in Rn described by m linear 
inequalities, i.e., of the form 

P = {x ∈ Rn : a�ix ≤ bi, i = 1, . . . ,m}, 

where ai ∈ Rn and bi ∈ R. For simplicity, assume the inequalities have been scaled so 
that ||ai|| = 1. We define the Euclidean ball B(x0, R) with center at x0 and radius R 
as the set B(x0, R) := {x ∈ Rn : ||x − x0|| ≤ R}. 
(a)	 Prove that the ball B(x0, R) is contained in the half-space defined by a�ix ≤ bi 

if and only if a�ix0 + R ≤ bi. (Hint: Draw a picture. What is the normal vector 
of the corresponding hyperplane?) 

(b)	 Write an LP formulation for finding the largest ball contained in the polyhedron 
P . 

(c)	 Write the dual of your LP formulation. 
(d)	 Write the complementarity slackness conditions for this LP problem. 
(e)	 Show that the optimality conditions are equivalent to the following geometric 

interpretation: 
A ball B(x0, R) is optimal if and only if the center x0 lies inside the con
vex hull of those contact points where the ball touches the hyperplanes 
a�ix = bi. 

Here you can assume that the problem is nontrivial (i.e., the radius of the largest 
ball is finite and nonzero). 

(f)	 Assume now that the ai are nonnegative vectors. Show using the dual LP that 
in this case, the polyhedron P must contain balls of arbitrarily large radius. Is 
this true for all unbounded polyhedra (regardless of the assumption on the ai)? 



� 

�
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�
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Solution: (a) The ball B(x0, R) in contained inside the half-space a�ix ≤ bi if and only if 
the point x0 + Rai is in the half-space. Using the normalization condition, this yields: 

a�i(x0 + Rai) ≤ bi ⇔ a�ix0 + R ≤ bi. 

(b)	 The ball is contained inside the polyhedron if and only if it is contained in all the 
halfspaces. From this, we can write the primal LP formulation: 

maximize R subject to 
ai
�x0 + R ≤ bi, i = 1, . . . ,m 

R 0≥ 

where the decision variables are x0 and R. This problem is always feasible, since P is 
nonempty. 

(c)	 The dual LP problem is ⎧ �m 
m	 ⎨ � λiai = 0� i=1 

minimize λibi subject to ⎩ 
m 

λi ≥ 1 .i=1 
i=1 λi 0≥ 

(d)	 The optimality conditions for a linear programming problem are primal feasibility, dual 
feasibility, and complementary slackness (or equivalently, zero duality gap). The com
plementary slackness conditions take the form: 

m
R ( i=1 λi − 1) = 0, λi · (a�ix0 + R − bi) = 0.· 

m(the additional condition (x0)j · ( i=1 λiai)j = 0 is automatically satisfied for all dual 
feasible λ). 

(e)	 If the optimal R is nonzero, then we must have m
i=1 λi = 1. The ith primal constraint 

is active if the ball B(x0, R) touches the hyperplane a�ix = bi (if the ith primal constraint 
is inactive, the corresponding λi must be equal to zero). Thus, we have: 

λiai = 0, λi = 1, λi ≥ 0, i ∈ A, 
i∈A i∈A 

where A is the set of active primal constraints. These can be equivalently rewritten as: 

λi(x0 + Rai) = x0, λi = 1, λi ≥ 0, i ∈ A. 
i∈A	 i∈A 

The geometric interpretation of this condition is clear: the center x0 of the ball must 
be inside the convex hull of the points x0 + Rai, which are exactly those where the ball 
B(x0, R) touches the hyperplanes. 

(f)	 If all the ai are nonnegative, then the dual LP is obviously infeasible. Since the primal 
LP is always feasible, then it must be unbounded (and thus, there are balls of arbitrarily 
large radius R inside the polyhedron P ). 

The conclusion is not true for all unbounded polyhedra. For instance, the polyhedron 
{(x, y) ∈ R2 : −1 ≤ x ≤ 1} is unbounded, but the largest ball inside it has radius 2. 



� 
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P3.	 [20 pts] Consider a discrete-time linear dynamical system of the form 

xk+1 = Axk + buk, k = 0, . . . , N − 1, 

where xk ∈ Rn, the control input uk ∈ R, and A ∈ Rn×n and b ∈ Rn×1 are given. 
The total fuel consumption F is given by the expression 

N−1

F = f(uk), 
k=0 

where f : R R describes the fuel consumption at stage k as a function of the control →
input uk. For this problem, we assume that f(u) is a piecewise linear function, of the 
form: � 

f(u) := 
2u u ≥ 0 
−u u ≤ 0. 

Our goal in this problem is to choose values for the control inputs u0, . . . , uN−1, in 
such a way that the state xN at time N is close to a given desired final state xF , and 
the total fuel consumption is small. More concretely, we want to find control inputs 
that minimize F + α · ||xN − xF ||∞, for some given fixed parameter α, where α ≥ 0 
(this parameter gives a tradeoff between total fuel consumption and accuracy of the 
final state). Assume that the initial state is equal to x0, and let J(x0) denote the 
optimal cost with this initial state. 

(a)	 Formulate the minimum fuel optimal control problem as a linear program. 
(b)	 Propose a dynamic programming formulation for this problem. Describe clearly 

all the components of the solution, and how to solve it. 
(c)	 Prove, using either formulation, that the optimal cost J(x0) is a convex function 

of the initial state x0. 
(d)	 Fix the initial state x0. What can you say about the optimal cost J(x0), as a 

function of the parameter α? 



� 
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Solution: (a) The problem admits the following LP formulation: ⎧ ⎪⎨ Axk + buk = xk+1 k = 0, . . . , N − 1N−1

min α �+ γk s.t. 2uk ≤ γk, −uk ≤ γk k = 0, . . . , N − 1 

−� ≤ (xN )i − (xF )i ≤ � i = 1, . . . , n 

·
xk,uk ,γk ,� ⎪⎩k=0 

where the decision variables are {x1, . . . , xN , u0, . . . , uN−1, γ0, . . . , γN−1, �}. 
(b)	 A DP formulation can be easily obtained, since the problem is directly in a form suitable 

for a Bellman-type iteration. Define the value function Jk(xk) to be the optimal cost 
starting at stage k from the state xk. Then, we have the recursion and final condition: 

Jk(xk) = min [f(uk) + Jk+1(Axk + buk)], JN (xN ) = α||xN − xF ||∞. 
uk 

We can solve this recursion backwards in time, thus obtaining J(x0) as an explicit 
function of x0. 

(c)	 We will prove this using either formulation: 
1. For the LP formulation, notice that x0 appears in the right-hand side of the con

straints, with the problem being a minimization. Thus, by dualizing, it follows that 
the optimal solution is a convex function of x0 (since it is the maximum of a finite 
set of affine functions of x0). 

2. From the DP formulation, notice that JN (xN ) is convex (since it is a norm) and 
piecewise linear. Furthermore, if Jk+1 is convex then so is Jk, since it is a partial 
minimization of a convex function over a convex set. Thus, J(x0) is a convex 
function of x0. 

(d)	 By a similar argument as the one used above (for the LP case), the cost J(x0) is a 
piecewise-linear concave function of α. It can also be seen that it is an increasing 
function of α, since the objective function is an increasing function of α over the feasible 
set (notice that � ≥ 0). 



� 
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P4.	 [25 pts] This problem discusses the 0-1 multiple knapsack (MKP) problem. Consider 
a set of n items, and m knapsacks (with m ≤ n). Let pj , wj denote the profit and 
weight of item j, and ci be the capacity of the ith knapsack. Given the n items, the 
objective is to find m disjoint subsets, so that the total profit of all the selected items 
is as large as possible, and with each subset being assigned to a knapsack subject to 
the respective weight constraint. (In terms of the formulation described in class, think 
of a band of m thieves that try to maximize their collective profits). For simplicity, 
assume all pj , wj , ci are positive integers. 

(a)	 Give an integer programming formulation of the multiple knapsack problem. For 
this, define binary variables xij , such that xij is equal to one if item j is assigned 
to knapsack i, or zero otherwise. Clearly express the objective function, and the 
contraints. 

(b)	 Using your formulation, show that an upper bound on the optimal cost of the 
MKP problem can be obtained by considering a single 0-1 knapsack problem, 
with a knapsack of capacity equal to m

i=1 ci. Explain in detail the relationship 
between the two formulations, and why the inequality holds. 

(c)	 Propose a Lagrangean relaxation for the IP formulation in item (a). Show that 
for a suitable choice of the dualized constraints, the Lagrangean dual can be 
reduced to m independent 0-1 single knapsack problems. What common feature 
do these problems have? 

(d)	 Describe very clearly (but at a high level) how would you use all the information 
above to fully solve a multiple knapsack problem (in particular: how would you 
solve the subproblems? how would you find the optimal Lagrange multipliers?). 



�
� � �

�
�

� � � 

� � �

Prof. P.A. Parrilo	 Final exam (Page 8 of 8) Fall 2008 

Solution: (a) The IP formulation of MKP is: ⎧ �
m n	 ⎨ 

n 
ci i = 1, . . . ,m �� j�=1 

m 
wj xij ≤

maximize pj xij subject to ⎩ i=1 xij ≤ 1 j = 1, . . . , n 
i=1 j=1 xij	 ∈ {0, 1} 

(b) Clearly, any feasible solution of the MKP problem yields a feasible solution for the single 
mknapsack problem of capacity i=1 ci (just put all the items together in a big knapsack!). 

Indeed, the latter corresponds to the formulation: 

n n m 
j=1 wj zj i=1 cimaximize 

� 
pj zj subject to 

≤ 

j=1 
zj ∈ {0, 1} 

Any feasible solution of the first problem yields a feasible solution of the second (with 
mthe same cost), via zj := i=1 xij . Thus, the value of the MKP problem is always less 

than or equal to than the value of the single-knapsack problem. 
m(c)	 We propose a Lagrangean formulation by dualizing the n constraints i=1 xij ≤ 1, with 

some fixed nonnegative multipliers λi. We have then (notice that we are maximizing): 

m n n m	 n�� � �� � � �	
i = 1, . . . ,m 

max pj xij − λj xij − 1 s.t. j=1 wj xij ≤ ci 

i=1 j=1 j=1 i=1 
xij ∈ {0, 1} 

The objective can be rewritten as: 

m n	 n

(pj − λj )xij + λj , 
i=1 j=1 j=1 

and provides an upper bound on the value of the MKP. Its value can be obtained by 
solving m independent single 0-1 knapsack problems with profits, weights, and capacity 
given by (p − λ, w, ci), i.e. : 

n	 n 

max (pj − λj )xij s.t. j=1 wj xij ≤ ci 

j=1 
xij ∈ {0, 1} 

Interestingly, these m problems all have the same weights and profits, but differ in the 
capacity ci. 

(d)	 We can fully solve a multiple knapsack problem using a branch and bound scheme (for 
instance, branching on whether a particular item is on a knapsack or not), where we use 
the Lagrangian relaxation approach discussed above to compute an upper bound for ev
ery subproblem. The single 0-1 knapsacks could be solved by dynamic programming (as 
explained during the lecture), which would enable solving all of them “simultaneously,” 
since the DP formulation obtains solutions for all values of the right-hand side. For the 
minimization over λi (i.e., the computation of the optimal dual multipliers), we could 
use a subgradient method as discussed in class. The use of branch and bound allows us 
to close any possible duality gap, in case the Lagrangian relaxation is not exact. 



MIT OpenCourseWare
http://ocw.mit.edu 

15.093J / 6.255J Optimization Methods 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

�

�


http://ocw.mit.edu
http://ocw.mit.edu/terms

