
�

�

�

2.098/6.255/15.093 - Recitation 9

Michael Frankovich and Shubham Gupta

November 20, 2009

1 Unconstrained Optimization

1.1 Optimality Conditions

Consider the unconstrained problem: minx∈Rn f(x), where f(x) is twice differentiable,
the optimality conditions are:

1. Necessary conditions:
∗If x is a local minimum, then ∇f(x ∗) = 0 and ∇2f(x ∗) is PSD.

2. Sufficient conditions:
If ∇f(x) = 0 and ∃ǫ > 0: ∇2f(x) is PSD for all x ∈ B(x, ǫ), then x is a local
optimum.

For a continuously differentiable convex function f , the sufficient and necessary condi
tions for x ∗ to be a global minimum is ∇f(x ∗) = 0.
Example 1 (Cauchy inequality) Given n positive numbers xi, prove that

� �1/n n n
� 1 �

xi ≤ xi
n

i=1 i=1

Proof. First, we change the variables to yi = ln(xi). If we consider i
n
=1 yi = c then

what we need to prove is
n

min eyi ≥ nec/n
Pn

i=1 yi=c
i=1

This is a constrained optimization problem; however, we can transform it into an un
constrained problem by subsituting yn = c − n−1 yi. The unconstrained problem is i=1
then

n−1
n−1 yi c− i=1 yimin

�
e + e

P

y∈Rn−1
i=1

1Thanks Allison Chang for notes.

1

�

� �

n−1 c− n−1
The necessary condition is ∇f(y) = 0, where f(y) =

�

i=1 e
yi + e

P

i=1 yi . We have:

n−1

= eyi − e c−
P

j=1 yj

∂yi

∂f(y)

Thus we obtain a system of equations

n−1

yi = c − yj ∀i = 1, . . . , n − 1
j=1

This system has a unique solution of yi = c/n for all i. If we know that the function
f(y) has global minima (which it does), then this solution is the unique global minimum
with the optimal value of nec/n. Thus the Cauchy inequality is proved.

2 Gradient Methods

We are interested in solving the following nonlinear unconstrained problem: minx∈Rn f(x).

In general, gradient methods generate a sequence of iterates xk that converge to an op

timal solution x ∗ .

Generic algorithm elements:

1. Iterative update xk+1 = xk + λkdk

2. Descent direction ∇f(xk)′dk < 0; for example, dk = −Dk∇f(xk), where Dk is
PSD.

3. Best step length λk = argminλ>0f(xk + λdk).

3 Methods of Unconstrained Optimization

3.1 Steepest Descent

First of all, we might ask ourselves, why should the gradient be part of the direction in
which we want to move? Suppose we are at a point x, and we want to move to a point
x + λd such that f(x + λd) < f(x). The linear approximation of f at x + λd is

f(x + λd) ≈ f(x) + λ∇f(x)T d.

Thus we want to find a d such that ∇f(x)T d is as small (negative) as possible. Define

d̃ = −
∇f(x)

.
‖∇f(x)‖

Note that ‖d̃‖ = 1. Let d be any other vector that satisfies ‖d‖ = 1. Then

∇f(x)T d̃ = ∇f(x)T −
∇f(x)

= −
∇f(x)T∇f(x)

= −
‖∇f(x)‖2

= −‖∇f(x)‖ = −‖∇f(x)‖‖d‖.
‖∇f(x)‖ ‖∇f(x)‖ ‖∇f(x)‖

2

� �

Now the Cauchy-Schwarz inequality says that for any vectors a and b, |aT b| ≤ ‖a‖‖b‖,
which implies −aT b ≤ ‖a‖‖b‖, or aT b ≥ −‖a‖‖b‖. Thus −‖∇f(x)‖‖d‖ ≤ ∇f(x)T d, so
we have

∇f(x)T d̃ ≤ ∇f(x)T d.

We have shown that among all directions d with ‖d‖ = 1, d̃ makes ∇f(x)T d the smallest
(most negative). The unnormalized direction −∇f(x) is called the direction of steepest
descent at x.
For the steepest descent method, we set Dk to be the identity matrix I for all k. Thus
the iterative step is just

xk+1 = xk − λk∇f(xk).

The algorithm stops when ∇f(xk) = 0, or when ‖∇f(xk)‖ is very small. The only
unspecified parameter in this algorithm is the stepsize λk. There are various methods for
choosing a stepsize. If f(x) is a convex function, then one way to pick a stepsize is an
exact line search. Since we already determined that the new point will be xk+λkdk, where
dk = −∇f(xk), we just want to find λk to minimize f(xk+λkdk). Let h(λ) = f(xk+λdk).
We want to find λ such that h′ (λ) = ∇f(xk + λdk)

T dk = 0. In some cases, we can find
an analytical solution to this equation. If not, recognize that h(λ) is convex since it is
the composition of a convex function with a linear function. Thus h′′ (λ) ≥ 0 for all λ,
which implies h′(λ) is increasing. Notice that h′(0) = ∇f(xk)

T dk = −∇f(xk)
T∇f(xk) =

−‖∇f(xk)‖
2 < 0. Since h′ (λ) is increasing, we can find some λ̄ > 0 such that h′(λ̄) > 0.

Then we can keep bisecting the interval 0, λ̄ until we find λ∗ such that h′(λ∗) = 0.

3.2 Newton’s Method

Suppose we are at a point x and move to x + d. The second-order approximation of f
at x + d is

1
h(d) = f(x) + ∇f(x)T d + dT H(x)d,

2

where H(x) is the Hessian of f at x. We minimize h by finding d such that ∇h(d) =
∇f(x) + H(x)d = 0, i.e., d = −H(x)−1∇f(x), which is called the Newton direction or
Newton step at x. This motivates Newton’s method, in which the iterative step is

xk+1 = xk − H(xk)
−1∇f(xk).

Here the stepsize is λk = 1 in every iteration, and Dk = H(xk)
−1 . Note that the Newton

direction is not necessarily a descent direction, though it is as long as H(xk)
−1 is positive

definite.

3.3 Rates of Convergence

We want to analyze the convergence rate, or the rate at which the error ek = ‖xk − x ∗‖
is decreasing, for the two methods described above. Suppose, for example, that the error
was ek = 0.1k in iteration k. Then we would have errors 10−1 , 10−2 , 10−3 , This error
is decreasing linearly. As another example, suppose the error was ek = 0.12k

. In this

3

� �

case, the errors would be 10−2 , 10−4 , 10−8 , . . . (much faster!). This error is decreasing

quadratically.

It can be shown that the convergence rate is linear for steepest descent and (locally)

quadratic for Newton’s method. Thus Newton’s method typically converges in fewer it

erations than steepest descent, but the computation can be much more expensive because

Newton’s method requires second derivatives.

3.4 Example

Suppose we want to minimize the one-dimensional function f(x) = 7x − ln x. We have
∇f(x) = f ′(x) = 7 −

x
1 and H(x) = f ′′ (x) =

x
1
2 . We can initialize x0 = 1. The steepest

descent iteration is then
� �

1
xk+1 = xk − λk 7 − ,

xk

and the Newton step is

1 � �
xk+1 = xk − x 2

k 7 − = xk + xk − 7x 2
k = 2xk − 7x 2

k. xk

4

MIT OpenCourseWare
http://ocw.mit.edu

15.093J / 6.255J Optimization Methods
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

�

�

http://ocw.mit.edu
http://ocw.mit.edu/terms

