15.093 Optimization Methods

Lecture 24: Semidefinite Optimization

1 Outline

1. Minimizing Polynomials as an SDP
2. Linear Difference Equations and Stabilization
3. Barrier Algorithm for SDO

2 SDO formulation

2.1 Primal and dual

$$
\begin{aligned}
(P): & \min \\
& \boldsymbol{C} \bullet \boldsymbol{X} \\
\text { s.t. } & \boldsymbol{A}_{i} \bullet \boldsymbol{X}=b_{i} \quad i=1, \ldots, m \\
& \boldsymbol{X} \succeq \mathbf{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (D): } \max \sum_{i=1}^{m} y_{i} b_{i} \\
& \text { s.t. } \quad \boldsymbol{C}-\sum_{i=1}^{m} y_{i} \boldsymbol{A}_{i} \succeq \mathbf{0}
\end{aligned}
$$

3 Minimizing Polynomials

3.1 Sum of squares

- A polynomial $f(x)$ is a sum of squares (SOS) if

$$
f(x)=\sum_{j} g_{j}^{2}(x)
$$

for some polynomials $g_{j}(x)$.

- A polynomial satisfies $f(x) \geq 0$ for all $x \in \mathcal{R}$ if and only if it is a sum of squares.
- Not true in more than one variable!

3.2 Proof

- (\Leftarrow) Obvious. If $f(x)=\sum_{j} g_{j}^{2}(x)$ then $f(x) \geq 0$.
- (\Rightarrow) Factorize $f(x)=C \prod_{j}\left(x-r_{j}\right)^{n_{j}} \prod_{k}\left(x-a_{k}+i b_{k}\right)^{m_{k}}\left(x-a_{k}-i b_{k}\right)^{m_{k}}$. Since $f(x)$ is nonnegative, then $C \geq 0$ and all the n_{j} are even. Then, $f(x)=f_{1}(x)^{2}+f_{2}(x)^{2}$, where

$$
\begin{aligned}
& f_{1}(x)=C^{\frac{1}{2}} \prod_{j}\left(x-r_{j}\right)^{\frac{n_{j}}{2}} \prod_{k}\left(x-a_{k}\right)^{m_{k}} \\
& f_{2}(x)=C^{\frac{1}{2}} \prod_{j}\left(x-r_{j}\right)^{\frac{n_{j}}{2}} \prod_{k} b_{k}^{m_{k}}
\end{aligned}
$$

3.3 SOS and SDO

- Let $\boldsymbol{z} x=\left(1, x, x^{2}, \ldots, x^{k}\right)^{\prime}$.
- $f(x)=\boldsymbol{z}(x)^{\prime} \boldsymbol{Q} \boldsymbol{z}(x)$ is a sum of squares if and only if

$$
f(x)=\boldsymbol{z}(x)^{\prime} \boldsymbol{Q} \boldsymbol{z}(x),
$$

where $\boldsymbol{Q} \succeq \mathbf{0}$, i.e., $\boldsymbol{Q}=\boldsymbol{L}^{\prime} \boldsymbol{L}$.

- Then, $f(x)=\boldsymbol{z}(x)^{\prime} \boldsymbol{L}^{\prime} \boldsymbol{L}(x)=\|L \boldsymbol{z}(x)\|^{2}$.

3.4 Formulation

- Consider $\min f(x)$.
- Then, $f(x) \geq \gamma$ if and only if $f(x)-\gamma=\boldsymbol{z} x^{\prime} \boldsymbol{Q} \boldsymbol{z} x$ with $\boldsymbol{Q} \succeq \mathbf{0}$. This implies linear constraints on γ and \boldsymbol{Q}.
- Reformulation

$$
\begin{gathered}
\max \gamma \\
\text { s.t. }\left\{\begin{aligned}
& f(x)-\gamma=\boldsymbol{z}(x)^{\prime} \boldsymbol{Q} \boldsymbol{z}(x) \\
& \boldsymbol{Q} \succeq \\
& \mathbf{0}
\end{aligned}\right.
\end{gathered}
$$

3.5 Example

3.5.1 Reformulation

$$
\min f(x)=3+4 x+2 x^{2}+2 x^{3}+x^{4} .
$$

$f(x)-\gamma=3-\gamma+4 x+2 x^{2}+2 x^{3}+x^{4}=\left(1, x, x^{2}\right)^{\prime} \boldsymbol{Q}\left(1, x, x^{2}\right)$.

$$
\begin{array}{cl}
\max & \gamma \\
\text { s.t. } & 3-\gamma=q_{11} \\
& 4=2 q_{12}, \quad 2=2 q_{13}+q_{22} \\
& 2=2 q_{23}, \quad 1=q_{33} \\
& \boldsymbol{Q}=\left[\begin{array}{lll}
q_{11} & q_{12} & q_{13} \\
q_{12} & q_{22} & q_{23} \\
q_{13} & q_{23} & q_{33}
\end{array}\right] \succeq \mathbf{0}
\end{array}
$$

Extensions to multiple dimensions.

4 Stability

- A linear difference equation

$$
x(k+1)=\boldsymbol{A} x(k), \quad x(0)=x_{0}
$$

- $x(k)$ converges to zero iff $\left|\lambda_{i}(\boldsymbol{A})\right|<1, i=1, \ldots n$
- Characterization:

$$
\left|\lambda_{i}(\boldsymbol{A})\right|<1 \quad \forall i \Longleftrightarrow \exists \boldsymbol{P} \succ 0 \quad \boldsymbol{A}^{\prime} \boldsymbol{P} \boldsymbol{A}-\boldsymbol{P} \prec 0
$$

4.1 Proof

- (\Longleftarrow) Let $\boldsymbol{A} v=\lambda v$. Then,

$$
0>v^{\prime}\left(\boldsymbol{A}^{\prime} \boldsymbol{P} \boldsymbol{A}-\boldsymbol{P}\right) v=\left(|\lambda|^{2}-1\right) \underbrace{v^{\prime} \boldsymbol{P} v}_{>0},
$$

and therefore $|\lambda|<1$

- ($\Longrightarrow)$ Let $\boldsymbol{P}=\sum_{i=0}^{\infty} \boldsymbol{A}^{i^{\prime}} \boldsymbol{Q} \boldsymbol{A}^{i}$, where $\boldsymbol{Q} \succ 0$. The sum converges by the eigenvalue assumption. Then,

$$
\boldsymbol{A}^{\prime} \boldsymbol{P} \boldsymbol{A}-\boldsymbol{P}=\sum_{i=1}^{\infty} \boldsymbol{A}^{i^{\prime}} \boldsymbol{Q} \boldsymbol{A}^{i}-\sum_{i=0}^{\infty} \boldsymbol{A}^{i^{\prime}} \boldsymbol{Q} \boldsymbol{A}^{i}=-\boldsymbol{Q} \prec 0
$$

4.2 Stabilization

- Consider now the case where \boldsymbol{A} is not stable, but we can change some elements, e.g., $\boldsymbol{A}(L)=\boldsymbol{A}+\boldsymbol{L} \boldsymbol{C}$, where \boldsymbol{C} is a fixed matrix.
- Want to find an \boldsymbol{L} such that $\boldsymbol{A}+\boldsymbol{L} \boldsymbol{C}$ is stable.
- Use Schur complements to rewrite the condition:

$$
\begin{gathered}
(\boldsymbol{A}+\boldsymbol{L} \boldsymbol{C})^{\prime} \boldsymbol{P}(\boldsymbol{A}+\boldsymbol{L} \boldsymbol{C})-\boldsymbol{P} \prec 0, \quad \boldsymbol{P} \succ 0 \\
{\left[\begin{array}{cc}
\boldsymbol{\imath} \\
\boldsymbol{P} & (\boldsymbol{A}+\boldsymbol{L} \boldsymbol{C})^{\prime} \boldsymbol{P} \\
\boldsymbol{P}(\boldsymbol{A}+\boldsymbol{L} \boldsymbol{C}) & \boldsymbol{P}
\end{array}\right] \succ 0}
\end{gathered}
$$

Condition is nonlinear in $(\boldsymbol{P}, \boldsymbol{L})$

4.3 Changing variables

- Define a new variable $\boldsymbol{Y}:=\boldsymbol{P} L$

$$
\left[\begin{array}{cc}
\boldsymbol{P} & \boldsymbol{A}^{\prime} \boldsymbol{P}+\boldsymbol{C}^{\prime} \boldsymbol{Y}^{\prime} \\
\boldsymbol{P} \boldsymbol{A}+\boldsymbol{Y} \boldsymbol{C} & \boldsymbol{P}
\end{array}\right] \succ 0
$$

- This is linear in $(\boldsymbol{P}, \boldsymbol{Y})$.
- Solve using SDO, recover \boldsymbol{L} via $\boldsymbol{L}=\boldsymbol{P}^{-1} \boldsymbol{Y}$

5 Primal Barrier Algorithm for SDO

- $\boldsymbol{X} \succeq \mathbf{0} \Leftrightarrow \lambda_{1}(\boldsymbol{X}) \geq 0, \ldots, \lambda_{n}(\boldsymbol{X}) \geq 0$
- Natural barrier to repel \boldsymbol{X} from the boundary $\lambda_{1}(\boldsymbol{X})>0, \ldots, \lambda_{n}(\boldsymbol{X})>0$:

$$
\begin{gathered}
-\sum_{j=1}^{n} \log \left(\lambda_{i}(\boldsymbol{X})\right)= \\
-\log \left(\prod_{j=1}^{n} \lambda_{i}(\boldsymbol{X})\right)=-\log (\operatorname{det}(\boldsymbol{X}))
\end{gathered}
$$

- Logarithmic barrier problem

$$
\begin{aligned}
\min & B_{\mu}(\boldsymbol{X})=\boldsymbol{C} \bullet \boldsymbol{X}-\mu \log (\operatorname{det}(\boldsymbol{X})) \\
\text { s.t. } & \boldsymbol{A}_{i} \bullet \boldsymbol{X}=b_{i}, i=1, \ldots, m, \\
& \boldsymbol{X} \succ \mathbf{0}
\end{aligned}
$$

- Derivative: $\nabla B_{\mu}(\boldsymbol{X})=\boldsymbol{C}-\mu \boldsymbol{X}^{-1}$

Follows from

$$
\log \operatorname{det}(\boldsymbol{X}+\boldsymbol{H}) \approx \log \operatorname{det}(\boldsymbol{X})+\operatorname{trace}\left(\boldsymbol{X}^{-1} \boldsymbol{H}\right)+\cdots
$$

- KKT conditions

$$
\begin{aligned}
& \boldsymbol{A}_{i} \bullet \boldsymbol{X}=\boldsymbol{b}_{i}, i=1, \ldots, m, \\
& \boldsymbol{C}-\mu \boldsymbol{X}^{-1}=\sum_{i=1}^{m} y_{i} \boldsymbol{A}_{i} . \\
& \boldsymbol{X} \succ \mathbf{0},
\end{aligned}
$$

- Given μ, need to solve these nonlinear equations for X, C, y_{i}
- Apply Newton's method until we are "close" to the optimal
- Reduce value of μ, and iterate until the duality gap is small

5.1 Another interpretation

- Recall the optimality conditions:

$$
\begin{aligned}
\boldsymbol{A}_{i} \bullet \boldsymbol{X} & =\boldsymbol{b}_{i} \quad, i=1, \ldots, m, \\
\sum_{i=1}^{m} y_{i} \boldsymbol{A}_{i}+\boldsymbol{S} & =\boldsymbol{C} \\
\boldsymbol{X}, \boldsymbol{S} & \succeq \mathbf{0}, \\
\boldsymbol{X} \boldsymbol{S} & =\mathbf{0}
\end{aligned}
$$

- Cannot solve directly. Rather, perturb the complementarity condition to $\boldsymbol{X} \boldsymbol{S}=$ μI.
- Now, unique solution for every $\mu>0$ (the "central path")
- Solve using Newton, for decreasing values of μ.

6 Differences with LO

- Many different ways to linearize the nonlinear complementarity condition

$$
\boldsymbol{X} \boldsymbol{S}=\mu \boldsymbol{I}
$$

- Want to preserve symmetry of the iterates
- Several search directions.

7 Convergence

7.1 Stopping criterion

- The point $\left(\boldsymbol{X}, y_{i}\right)$ is feasible, and has duality gap:

$$
\boldsymbol{C} \bullet \boldsymbol{X}-\sum_{i=1}^{m} y_{i} b_{i}=\mu \boldsymbol{X}^{-1} \bullet \boldsymbol{X}=n \mu
$$

- Therefore, reducing μ always decreases the duality gap
- Barrier algorithm needs $O\left(\sqrt{n} \log \frac{\epsilon_{0}}{\epsilon}\right)$ iterations to reduce duality gap from ϵ_{0} to ϵ

8 Conclusions

- SDO is a powerful modeling tool
- Barrier and primal-dual algorithms are very powerful
- Many good solvers available: SeDuMi, SDPT3, SDPA, etc.
- Pointers to literature and solvers: www-user.tu-chemnitz.de/~helmberg/semidef.html

MIT OpenCourseWare
http://ocw.mit.edu

15.093J / 6.255J Optimization Methods

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

