MIT, 2.098J/6.255J/15.093J
 Optimization Methods, Fall 2009
 Problem Set \#7

Due: Lec \#20 (in class)
Note: Problem 1 is worth significant credit in this HW.

1. (TSP - Performance of Different Algorithms).

BT Exercise 11.17. Submit a hardcopy of your code.

2. (Dynamic Programming Exercise).

Consider the matrix multiplication problem we saw in Lecture 16. We want to find an optimal sequence of multiplications for computing $M_{1} \cdot M_{2} \cdot M_{3} \cdot M_{4}$. Suppose the dimensions of the four matrices are $5 \times 4,4 \times 6,6 \times 2$ and 2×7. Use the DP recursion in the lecture to compute the optimal sequence of multiplications. Show all the steps.

3. (Diffraction Law in Optics).

Let p and q be two points on the plane that lie on opposite sides of a horizontal axis. Assume that the speed of light from p and from q to the horizontal axis is v and w, respectively, and that light reaches a point from other points along paths of minimum travel time. Formulate a non-linear optimization problem to find the path that a ray of light would follow from p to q.

4. (Characterizing Convex/Concave Functions).

Which of the following functions is convex, concave, strictly convex, strictly concave or none of the above? Why?

1. $f\left(x_{1}\right)=x_{1}^{2}+e^{x_{1}^{2}}$
2. $f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}+4 x_{1} x_{2}-10 x_{1}+5 x_{2}$
3. $f\left(x_{1}, x_{2}\right)=x_{1} e^{-\left(x_{1}+x_{2}\right)}$
4. $f\left(x_{1}, x_{2}, x_{3}\right)=-x_{1}^{2}-3 x_{2}^{2}-2 x_{3}^{2}+4 x_{1} x_{2}+2 x_{1} x_{3}+4 x_{2} x_{3}$

MIT OpenCourseWare
http://ocw.mit.edu

15.093J / 6.255J Optimization Methods

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

