15.093 Optimization Methods

Lecture 2: The Geometry of LO

1 Outline

- Polyhedra
- Standard form
- Algebraic and geometric definitions of corners
- Equivalence of definitions
- Existence of corners
- Optimality of corners
- Conceptual algorithm

2 Central Problem

$$
\begin{array}{lcl}
\operatorname{minimize} & \boldsymbol{c}^{\prime} \boldsymbol{x} & \\
\text { subject to } & \boldsymbol{a}_{\boldsymbol{i}} \boldsymbol{x}^{\prime}=b_{i} & i \in M_{1} \\
& \boldsymbol{a}_{\boldsymbol{i}} \boldsymbol{x} \leq b_{i} & i \in M_{2} \\
& \boldsymbol{a i}_{\boldsymbol{i}} \boldsymbol{x} \geq b_{i} & i \in M_{3} \\
& x_{j} \geq 0 & j \in N_{1} \\
& x_{j}{ }^{>}<0 & j \in N_{2}
\end{array}
$$

2.1 Standard Form

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

Characteristics

- Minimization problem
- Equality constraints
- Non-negative variables
2.2 Transformations

$$
\begin{array}{lll}
\max \boldsymbol{c}^{\prime} \boldsymbol{x} & & -\min \left(-\boldsymbol{c}^{\prime} \boldsymbol{x}\right) \\
\boldsymbol{a}_{\boldsymbol{i}}{ }^{\prime} \boldsymbol{x} \leq b_{i} \\
& \Leftrightarrow & \boldsymbol{a}_{\boldsymbol{i}}{ }^{\boldsymbol{x}}+s_{i}=b_{i}, \quad s_{i} \geq 0 \\
\boldsymbol{a}_{\boldsymbol{i}}{ }^{\prime} \boldsymbol{x} \geq b_{i} & & \boldsymbol{a}_{\boldsymbol{i}}{ }^{\prime} \boldsymbol{x}-s_{i}=b_{i}, \quad s_{i} \geq 0 \\
x_{j}><0 & x_{j}=x_{j}^{+}-x_{j}^{-} \\
& x_{j}^{+} \geq 0, x_{j}^{-} \geq 0
\end{array}
$$

2.3 Example

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1}-x_{2} \\
\text { subject to } & x_{1}+x_{2} \leq 1 \\
& x_{1}+2 x_{2} \geq 1 \\
& x_{1}>0, x_{2} \geq 0 \\
& \Downarrow \\
\text {-minimize } & -x_{1}^{+}+x_{1}^{-}+x_{2} \\
\text { subject to } & x_{1}^{+}-x_{1}^{-}+x_{2}+s_{1}=1 \\
& x_{1}^{+}-x_{1}^{-}+2 x_{2} \quad-s_{2}=1 \\
& x_{1}^{+}, x_{1}^{-}, x_{2}, s_{1}, s_{2} \geq 0
\end{array}
$$

3 Preliminary Insights

$$
\begin{aligned}
\operatorname{minimize} & -x_{1}-x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \leq 3 \\
& 2 x_{1}+x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- There exists a unique optimal solution.
- There exist multiple optimal solutions; in this case, the set of optimal solutions can be either bounded or unbounded.

- The optimal cost is $-\infty$, and no feasible solution is optimal.
- The feasible set is empty.

4 Polyhedra

4.1 Definitions

- The set $\left\{\boldsymbol{x} \mid \boldsymbol{a}^{\prime} \boldsymbol{x}=b\right\}$ is called a hyperplane.
- The set $\left\{\boldsymbol{x} \mid \boldsymbol{a}^{\prime} \boldsymbol{x} \geq b\right\}$ is called a halfspace.
- The intersection of many halfspaces is called a polyhedron.

(a)

(b)

5 Corners

5.1 Extreme Points

- Polyhedron $P=\{\boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\}$
- $x \in P$ is an extreme point of P
if $\nexists \boldsymbol{y}, \boldsymbol{z} \in P(\boldsymbol{y} \neq \boldsymbol{x}, \boldsymbol{z} \neq \boldsymbol{x}):$
$\boldsymbol{x}=\lambda \boldsymbol{y}+(1-\lambda) \boldsymbol{z}, 0<\lambda<1$

5.2 Vertex

- $\boldsymbol{x} \in P$ is a vertex of P if $\exists \boldsymbol{c}$:
\boldsymbol{x} is the unique optimum

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{c}^{\prime} \boldsymbol{y} \\
\text { subject to } & \boldsymbol{y} \in P
\end{array}
$$

5.3 Basic Feasible Solution

$$
P=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}+x_{2}+x_{3}=1, \quad x_{1}, x_{2}, x_{3} \geq 0\right\}
$$

Points A,B,C : 3 constraints active
Point E: 2 constraints active
suppose we add $2 x_{1}+2 x_{2}+2 x_{3}=2$.

Then 3 hyperplanes are tight, but constraints are not linearly independent.
Intuition: a point at which n inequalities are tight and corresponding equations are linearly independent. $P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A x} \leq \boldsymbol{b}\right\}$

- a_{1}, \ldots, a_{m} rows of A
- $\boldsymbol{x} \in P$
- $I=\left\{i \mid \boldsymbol{a}_{\boldsymbol{i}}{ }^{\prime} \boldsymbol{x}=b_{i}\right\}$

Definition \boldsymbol{x} is a basic feasible solution if subspace spanned by $\left\{\boldsymbol{a}_{\boldsymbol{i}}, i \in I\right\}$ is \Re^{n}.

5.3.1 Degeneracy

- If $|I|=n$, then $\boldsymbol{a}_{\boldsymbol{i}}, \quad i \in I$ are linearly independent; \boldsymbol{x} nondegenerate.
- If $|I|>n$, then there exist n linearly independent $\left\{\boldsymbol{a}_{\boldsymbol{i}}, i \in I\right\} ; \boldsymbol{x}$ degenerate.

(a)

(b)

6 Equivalence of definitions

Theorem: $P=\{\boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\}$. Let $\boldsymbol{x} \in P$.
\boldsymbol{x} is a vertex $\Leftrightarrow \boldsymbol{x}$ is an extreme point $\Leftrightarrow \boldsymbol{x}$ is a BFS.

7 BFS for standard form polyhedra

- $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$
- $m \times n$ matrix \boldsymbol{A} has linearly independent rows
- $\boldsymbol{x} \in \Re^{n}$ is a basic solution if and only if $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, and there exist indices $B(1), \ldots, B(m)$ such that:
- The columns $\boldsymbol{A}_{B(1)}, \ldots, \boldsymbol{A}_{B(m)}$ are linearly independent
- If $i \neq B(1), \ldots, B(m)$, then $x_{i}=0$

7.1 Construction of BFS

Procedure for constructing basic solutions

1. Choose m linearly independent columns $\boldsymbol{A}_{B(1)}, \ldots, \boldsymbol{A}_{B(m)}$
2. Let $x_{i}=0$ for all $i \neq B(1), \ldots, B(m)$
3. Solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ for $x_{B(1)}, \ldots, x_{B(m)}$

$$
\begin{gathered}
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \quad \rightarrow \quad \boldsymbol{B} \boldsymbol{x}_{B}+\boldsymbol{N} \boldsymbol{x}_{N}=\boldsymbol{b} \\
\boldsymbol{x}_{N}=0, \quad \boldsymbol{x}_{B}=\boldsymbol{B}^{-1} \boldsymbol{b}
\end{gathered}
$$

7.2 Example

$$
\left[\begin{array}{lllllll}
1 & 1 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 6 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{r}
8 \\
12 \\
4 \\
6
\end{array}\right]
$$

- $\boldsymbol{A}_{4}, \boldsymbol{A}_{5}, \boldsymbol{A}_{6}, \boldsymbol{A}_{7}$ basic columns
- Solution: $\boldsymbol{x}=(0,0,0,8,12,4,6)$, a BFS
- Another basis: $\boldsymbol{A}_{3}, \boldsymbol{A}_{5}, \boldsymbol{A}_{6}, \boldsymbol{A}_{7}$ basic columns.
- Solution: $\boldsymbol{x}=(0,0,4,0,-12,4,6)$, not a BFS

7.3 Geometric intuition

8 Existence of BFS

$$
P=\left\{\left(x_{1}, x_{2}\right): 0 \leq x_{1}, x_{2} \leq 1\right\}
$$

$$
Q=\left\{\left(x_{1}, x_{2}\right):-x_{1}+x_{2} \leq 2, x_{1} \geq 0, x_{2} \geq 0\right\}
$$

Definition: P contains a line if $\exists \boldsymbol{x} \in P$; and $\boldsymbol{d} \in \Re^{n}$:

$$
\boldsymbol{x}+\alpha \boldsymbol{d} \in P \quad \forall \alpha .
$$

Theorem: $P=\left\{x \in \Re^{n} \mid A x \geq b\right\} \neq \emptyset$. P has a BFS $\Leftrightarrow P$ does not contain a line.

Implications

- Polyhedra in standard form $P=\{\boldsymbol{x} \mid \boldsymbol{A x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\}$ contain a BFS
- Bounded polyhedra have a BFS.

9 Optimality of BFS

$$
\begin{array}{cl}
\min & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x} \in P=\{\boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\}
\end{array}
$$

Theorem: Suppose P has at least one extreme point. Either optimal cost is $-\infty$ or there exists an extreme point which is optimal.

10 Conceptual algorithm

- Start at a corner
- Visit a neighboring corner that improves objective.

MIT OpenCourseWare
http://ocw.mit.edu

15.093J / 6.255J Optimization Methods

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

