15.093 Optimization Methods

Lecture 17: Applications of Nonlinear Optimization

1 Lecture Outline

- History of Nonlinear Optimization
- Where do NLPs Arise?
- Portfolio Optimization
- Traffic Assignment
- The general problem
- The role of convexity
- Convex optimization
- Examples of convex optimization problems

2 History of Optimization

Fermat, 1638; Newton, 1670

min
$$f(x)$$
 x: scalar
$$\frac{df(x)}{dx} = 0$$

Euler, 1755

$$\min f(x_1, \dots, x_n)$$
$$\nabla f(\boldsymbol{x}) = 0$$

SLIDE 3

Lagrange, 1797

$$\min f(x_1, \dots, x_n)$$

s.t. $g_k(x_1, \dots, x_n) = 0$ $k = 1, \dots, m$

Euler, Lagrange Problems in infinite dimensions, calculus of variations.

Kuhn and Tucker, 1950s Optimality conditions.

1950s Applications.

1960s Large Scale Optimization.

Karmakar, 1984 Interior point algorithms.

SLIDE 1

3 Where do NLPs Arise?

3.1 Wide Applicability

• Transportation	
Traffic management, Traffic equilibrium	
Revenue management and Pricing	
• Finance - Portfolio Management	
• Equilibrium Problems	
	SLIDE 5
• Engineering	
Data Networks and Routing	

SLIDE 4

SLIDE 6

• Manufacturing

Resource Allocation Production Planning

Pattern Classification

4 A Simple Portfolio Selection Problem

4.1 Data

- x_i : decision variable on amount to invest in stock i = 1, 2
- r_i: reward from stock i = 1, 2 (random variable)
 Data:
- $\mu_i = E(r_i)$: expected reward from stock i = 1, 2
- $Var(r_i)$: variance in reward from stock i = 1, 2
- $\sigma_{ij} = E[(r_j \mu_j)(r_i \mu_i)] = Cov(r_i, r_j)$
- Budget B, target β on expected portfolio reward

5 A Simple Portfolio Selection Problem

5.1 The Problem

Objective: Minimize total portfolio variance so that:

- Expected reward of total portfolio is above target β
- Total amount invested stay within our budget
- No short sales

min $f(x) = x_1^2 Var(r_1) + x_2^2 Var(r_2) + 2x_1 x_2 \sigma_{12}$

subject to

$$\sum_{i} x_i \le B$$

$$E[\sum_{i} r_{i}x_{i}] = \sum_{i} \mu_{i}x_{i} \ge \beta$$
, (exp reward of portf.)
 $x_{i} > 0, i = 1, 2$

(Linearly constrained NLP)

6 A Real Portfolio Optimization Problem

6.1 Data

- We currently own z_i shares from stock $i, i \in S$
- P_i : current price of stock i
- We consider buying and selling stocks in S, and consider buying new stocks from a set B $(B \cap S = \emptyset)$
- Set of stocks $B \cup S = \{1, \ldots, n\}$
- Data: Forecasted prices next period (say next month) and their correlations:

$$E[P_i] = \mu_i$$

$$Cov(\hat{P}_i, \hat{P}_j) = E[(\hat{P}_i - \mu_i)(\hat{P}_j - \mu_j)] = \sigma_{ij}$$

$$\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)', \qquad \boldsymbol{\Sigma} = \sigma_{ij}$$

SLIDE 10

SLIDE 9

SLIDE 8

6.2 Issues and Objectives

- Mutual funds regulations: we cannot sell a stock if we do not own it
- Transaction costs
- Turnover
- Liquidity
- Volatility
- Objective: Maximize expected wealth next period minus transaction costs

6.3 Decision variables

 $x_i = \left\{ \begin{array}{ll} \# \text{ shares bought or sold} & \text{if } i \in S \\ \# \text{ shares bought} & \text{if } i \in B \end{array} \right.$

By convention:

$$\begin{array}{ll} x_i \ge 0 & \quad \text{buy} \\ x_i < 0 & \quad \text{sell} \end{array}$$

6.4 Transaction costs

- Small investors only pay commision cost: a_i \$/share traded
- Transaction cost: $a_i |x_i|$
- Large investors (like portfolio managers of large funds) may affect price: price becomes $P_i + b_i x_i$
- Price impact cost: $(P_i + b_i x_i) x_i P_i x_i = b_i x_i^2$
- Total cost model:

$$c_i(x_i) = a_i |x_i| + b_i x_i^2$$

6.5 Liquidity

- Suppose you own 50% of all outstanding stock of a company
- How difficult is to sell it?
- Reasonable to bound the percentage of ownership on a particular stock
- Thus, for **liquidity** reasons $\frac{z_i + x_i}{z_i^{total}} \leq \gamma_i$
- $z_i^{total} = \#$ outstanding shares of stock i
- γ_i maximum allowable percentage of ownership

SLIDE 14

SLIDE 12

SLIDE 13

6.6 Turnover

• Because of transaction costs: $|x_i|$ should be small

$$|x_i| \le \delta_i \quad \Rightarrow \quad -\delta_i \le x_i \le \delta_i$$

• Alternatively, we might want to bound turnover:

$$\sum_{i=1}^{n} P_i |x_i| \le t$$

Balanced portfolios 6.7

• Need the value of stocks we buy and sell to balance out:

$$\left|\sum_{i=1}^{n} P_{i} x_{i}\right| \leq L \quad \Rightarrow \quad -L \leq \sum_{i=1}^{n} P_{i} x_{i} \leq L$$

• No short sales:

$$z_i + x_i \ge 0, \qquad i \in B \cup S$$

6.8 Expected value and Volatility

• Expected value of portfolio:

$$E\left[\sum_{i=1}^{n} \hat{P}_i(z_i + x_i)\right] = \sum_{i=1}^{n} \mu_i(z_i + x_i)$$

• Variance of the value of the portfolio:

$$Var\left[\sum_{i=1}^{n} \hat{P}_{i}(z_{i}+x_{i})\right] = (\boldsymbol{z}+\boldsymbol{x})'\boldsymbol{\Sigma}(\boldsymbol{z}+\boldsymbol{x})$$

6.9 **Overall formulation**

$$\begin{aligned} \max & \sum_{i=1}^{n} \mu_i (z_i + x_i) - \sum_{i=1}^{n} (a_i |x_i| + b_i x_i^2) \\ \text{s.t.} & (\boldsymbol{z} + \boldsymbol{x})' \boldsymbol{\Sigma} (\boldsymbol{z} + \boldsymbol{x}) \leq \sigma^2 \\ & z_i + x_i \leq \gamma_i z_i^{total} \\ & -\delta_i \leq x_i \leq \delta_i \\ & -L \leq \sum_{i=1}^{n} P_i x_i \leq L \\ & \sum_{i=1}^{n} P_i |x_i| \leq t \\ & z_i + x_i \geq 0 \end{aligned}$$

5

SLIDE 18

SLIDE 15

SLIDE 16

7 The general problem

$f(\boldsymbol{x}) \colon \, \Re^n \mapsto \Re$ $g_i(\boldsymbol{x}) \colon \, \Re^n \mapsto \Re, i = 1, \dots, m$

NLP:	min s.t.	$f(oldsymbol{x})\ g_1(oldsymbol{x})$	\leq	0
		\vdots $g_m(oldsymbol{x})$	\leq	0

7.1 Is Portfolio Optimization an NLP?

 $\max \sum_{\substack{i=1\\i=1}}^{n} \mu_i (z_i + x_i) - \sum_{\substack{i=1\\i=1}}^{n} (a_i |x_i| + b_i x_i^2)$ s.t. $(\boldsymbol{z} + \boldsymbol{x})' \boldsymbol{\Sigma} (\boldsymbol{z} + \boldsymbol{x}) \leq \sigma^2$ $z_i + x_i \leq \gamma_i z_i^{total}$ $-\delta_i \leq x_i \leq \delta_i$ $-L \leq \sum_{\substack{i=1\\i=1}}^{n} P_i x_i \leq L$ $\sum_{\substack{i=1\\i=1}}^{n} P_i |x_i| \leq t$ $z_i + x_i \geq 0$

8 Geometry Problems

8.1 Fermat-Weber Problem

Given m points $c_1, \ldots, c_m \in \Re^n$ (locations of retail outlets) and weights $w_1, \ldots, w_m \in \Re$. Choose the location of a distribution center.

That is, the point $x \in \Re^n$ to minimize the sum of the weighted distances from x to each of the points $c_1, \ldots, c_m \in \Re^n$ (minimize total daily distance traveled).

$$\min \quad \sum_{i=1}^{m} \boldsymbol{w}_i || \boldsymbol{x} - \boldsymbol{c}_i |$$

s.t. $\boldsymbol{x} \in \Re^n$

or

SLIDE 20

SLIDE 19

$$\begin{array}{ll} \min & \sum\limits_{i=1}^{m} \boldsymbol{w}_{i} || \boldsymbol{x} - \boldsymbol{c}_{i} || \\ \text{s.t.} & \boldsymbol{x} \geq 0 \\ & A \boldsymbol{x} \leq b, \text{ feasible sites} \end{array}$$

(Linearly constrained NLP)

8.2 The Ball Circumscription Problem

SLIDE 22

SLIDE 23

Given *m* points $c_1, \ldots, c_m \in \mathbb{R}^n$, locate a distribution center at point $x \in \mathbb{R}^n$ to minimize the maximum distance from x to any of the points $c_1, \ldots, c_m \in \mathbb{R}^n$.

 $\begin{array}{ll} \min & \delta \\ \text{s.t.} & || \boldsymbol{x} - \boldsymbol{c}_i || \leq \delta, \\ \end{array} \quad i = 1, \dots, m$

9 Transportation

9.1 Traffic Assignment

• OD w, paths $p \in P_w$, demand d_w , x_p : flow of p $c_{ij}(\sum_{p:\ crossing\ (i,j)} x_p)$: travel cost of link (i, j). $c_p(x)$ is the travel cost of path p and

$$c_p(x) = \sum_{(i,j) \text{ on } p} c_{ij}(x_{ij}), \quad \forall p \in P_w, \quad \forall w \in W.$$

System – optimization principle: Assign flow on each path to satisfy total demand and so that the total network cost is minimized.

$$Min \ C(x) = \sum_{p} c_{p}(x)x_{p}$$

s.t. $x_{p} \ge 0$, $\sum_{p \in P_{w}} x_{p} = d_{w}$, $\forall w$

9.2 Example

Consider a three path network, $d_w = 10$. With travel costs $c_{p_1}(x) = 2x_{p_1} + x_{p_2} + 15$, $c_{p_2}(x) = 3x_{p_2} + x_{p_1} + 11$ $c_{p_3}(x) = x_{p_3} + 48$ $C(x) = c_{p_1}(x)x_{p_1} + c_{p_2}(x)x_{p_2} + c_{p_3}(x)x_{p_3} =$

$$2x_{p1}^{2} + 3x_{p2}^{2} + x_{p3}^{2} + 2x_{p1}x_{p2} + 15x_{p1} + 11x_{p2} + 38x_{p3}$$
$$x_{p1}^{*} = 6, \quad x_{p2}^{*} = 4, \quad x_{p3}^{*} = 0$$

SLIDE 25

User - optimization principle: Each user of the network chooses, among all paths, a path requiring minimum travel cost, i.e., for all w ∈ W and p ∈ P_w,

 $x_p^* > 0 : \longrightarrow c_p(x^*) \le c_{p'}(x^*) \quad \forall p' \in P_w, \quad \forall w \in W$

where $c_{p}(x)$ is the travel time of path p and

$$c_{p}(x) = \sum_{(i,j) \text{ on } p} c_{ij}(x_{ij}), \quad \forall p \in P_{w}, \quad \forall w \in W$$

10 Optimal Routing

• Given a data net and a set W of OD pairs w=(i,j)each OD pairw has input traffic d_w

• Optimal routing problem:

$$Min \quad C(x) = \sum_{i,j} C_{i,j} \left(\sum_{p: (i,j) \in p} x_p \right)$$
$$s.t. \quad \sum_{p \in P_w} x_p = d_w, \quad \forall w \in W$$
$$x_p \ge 0, \quad \forall p \in P_w, \quad w \in W$$

11 The general problem again

Slide 27

is a continuous (usually differentiable) function of n variables

$$g_i(\boldsymbol{x}) \colon \mathfrak{R}^n \mapsto \mathfrak{R}, i = 1, \dots, m,$$

 $h_j(\boldsymbol{x}) \colon \mathfrak{R}^n \mapsto \mathfrak{R}, j = 1, \dots, l$

 $f(\boldsymbol{x}) \colon \Re^n \mapsto \Re$

NLP:	min	$f(oldsymbol{x})$		
	s.t.	$g_1(oldsymbol{x})$	\leq	0
		:		
		$a_m(\boldsymbol{x})$	<	0
		$h_1(x)$		0
		•		-
		:		0
		$h_l(oldsymbol{x})$	=	U

11.1 Definitions

• The feasible region of *NLOP* is the set:

11.2 Where do optimal solutions lie?

Example:

min
$$f(x, y) = (x - a)^2 + (y - b)^2$$

Subject to

$$(x-8)^2 + (y-9)^2 \le 49$$

 $2 \le x \le 13$
 $x+y \le 24$

Optimal solution(s) do not necessarily lie at an extreme point! Depends on (a, b).

(a,b) = (16,14) then solution lies at a corner (a,b) = (11,10) then solution lies in interior (a,b) = (14,14) then solution lies on the boundary (not necessarily corner)

11.3 Local vs Global Minima

• The ball centered at \bar{x} with radius ϵ is the set:

$$B(\bar{\boldsymbol{x}}, \epsilon) := \{\boldsymbol{x} | || \boldsymbol{x} - \bar{\boldsymbol{x}} || \le \epsilon \}$$

- $x \in \mathcal{F}$ is a *local minimum* of *NLOP* if there exists $\epsilon > 0$ such that $f(x) \leq f(y)$ for all $y \in B(x, \epsilon) \cap \mathcal{F}$
- $x \in \mathcal{F}$ is a global minimum of NLOP if $f(x) \leq f(y)$ for all $y \in \mathcal{F}$

12 Convex Sets

• A subset $S \subset \Re^n$ is a *convex set* if

$$\boldsymbol{x}, \boldsymbol{y} \in S \Rightarrow \lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y} \in S \qquad \forall \lambda \in [0, 1]$$

- If S, T are convex sets, then $S \cap T$ is a convex set
- Implication: The intersection of any collection of convex sets is a convex set

SLIDE 30

SLIDE 28

SLIDE 29

Convex Functions 13

• A function f(x) is a convex function if

$$f(\lambda \boldsymbol{x} + (1 - \lambda)\boldsymbol{y}) \leq \lambda f(\boldsymbol{x}) + (1 - \lambda)f(\boldsymbol{y})$$
$$\forall \boldsymbol{x}, \, \boldsymbol{y} \qquad \forall \lambda \in [0, 1]$$

• A function f(x) is a concave function if

$$\begin{split} f(\lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y}) &\geq \lambda f(\boldsymbol{x}) + (1 - \lambda) f(\boldsymbol{y}) \\ &\forall \boldsymbol{x}, \, \boldsymbol{y} \quad \forall \lambda \in [0, 1] \end{split}$$

Examples in one dimension 13.1

• f(x) = ax + b

- $f(x) = x^2 + bx + c$
- f(x) = |x|
- $f(x) = -\ln(x)$ for x > 0
- $f(x) = \frac{1}{x}$ for x > 0
- $f(x) = e^x$

13.2 Properties

- SLIDE 34 • If $f_1(x)$ and $f_2(x)$ are convex functions, and $a, b \ge 0$, then f(x) := $af_1(\mathbf{x}) + bf_2(\mathbf{x})$ is a convex function
- If f(x) is a convex function and x = Ay + b, then g(y) := f(Ay + b) is a convex function

Recognition of a Convex Function 13.3

A function $f(\mathbf{x})$ is twice differentiable at $\bar{\mathbf{x}}$ if there exists a vector $\nabla f(\bar{\mathbf{x}})$ (called the gradient of $f(\cdot)$ and a symmetric matrix $H(\bar{x})$ (called the Hessian of $f(\cdot)$) for which:

$$f(x) = f(\bar{x}) + \nabla f(\bar{x})'(x - \bar{x}) + \frac{1}{2}(x - \bar{x})'H(\bar{x})(x - \bar{x}) + R(x)||x - \bar{x}||^2$$

where $R(\boldsymbol{x}) \to 0$ as $\boldsymbol{x} \to \bar{\boldsymbol{x}}$ SLIDE 36

The gradient vector is the vector of partial derivatives:

$$(2f(z)) = 2f(z))'$$

$$abla f(ar{x}) = \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n} \right)$$

SLIDE 33

SLIDE 35

The Hessian matrix is the matrix of second partial derivatives:

$$H(\bar{\boldsymbol{x}})_{ij} = \frac{\partial^2 f(\bar{\boldsymbol{x}})}{\partial x_i \partial x_j}$$

13.4 Examples

• For LP, f(x) = c'x, $\nabla f(\bar{x}) = c$ • For NLP, $f(x) = 8x_1^2 - x_1x_2 + x_2^2 + 8x_1$, at $\bar{x} = (1,0)$, $f(\bar{x}) = 16$ and $\nabla f(\bar{x})' = (16\bar{x}_1 - \bar{x}_2 + 8, -\bar{x}_1 + 2\bar{x}_2) = (24, -1)$. $H(\bar{x}) = \begin{bmatrix} 16 & -1 \\ -1 & 2 \end{bmatrix}$ SLIDE 38 Property: f(x) is a convex function if and only if H(x) is positive semi-definite (PSD) for all x

Recall that \boldsymbol{A} is PSD if $\boldsymbol{u'Au} \ge 0$, $\forall u$

Property: If $H(\mathbf{x})$ is PD for all \mathbf{x} , then $f(\mathbf{x})$ is a strictly convex function

13.5 Examples in n Dimensions

• f(x) = a'x + b• $f(x) = \frac{1}{2}x'Mx - c'x$ where M is PSD

- $f(\mathbf{x}) = ||\mathbf{x}||$ for any norm $||\cdot||$
- $f(x) = \sum_{i=1}^m -\ln(b_i a'_i x)$ for x satisfying Ax < b

14 Convex Optimization

14.1 Convexity and Minima

$$\begin{array}{ll} \min & f(\boldsymbol{x}) \\ \text{s.t.} & \boldsymbol{x} \in \mathcal{F} \end{array}$$

SLIDE 40

SLIDE 37

<u>Theorem:</u> Suppose that \mathcal{F} is a convex set, $f : \mathcal{F} \to \Re$ is a convex function, and x^* is a local minimum of P. Then x^* is a global minimum of f over \mathcal{F} .

14.1.1 Proof

SLIDE 41

Assume that x^* is not the global minimum. Let y be the global minimum. From the convexity of $f(\cdot)$,

$$\begin{aligned} f(\boldsymbol{y}(\lambda)) &= f(\lambda \boldsymbol{x}^* + (1-\lambda)\boldsymbol{y}) \leq \lambda f(\boldsymbol{x}^*) + (1-\lambda)f(\boldsymbol{y}) \\ &< \lambda f(\boldsymbol{x}^*) + (1-\lambda)f(\boldsymbol{x}^*) = f(\boldsymbol{x}^*) \end{aligned}$$

for all $\lambda \in (0, 1)$.

Therefore, $f(\boldsymbol{y}(\lambda)) < f(\boldsymbol{x}^*)$ for all $\lambda \in (0, 1)$, and so \boldsymbol{x}^* is not a local minimum, resulting in a contradiction

14.2 COP

$$COP$$
: min $f(\boldsymbol{x})$
s.t. $g_1(\boldsymbol{x}) \leq 0$
 \vdots
 $g_m(\boldsymbol{x}) \leq 0$
 $A\boldsymbol{x} = \boldsymbol{b}$

SLIDE 43

SLIDE 44

SLIDE 42

COP is called a *convex optimization problem* if $f(\boldsymbol{x}), g_1(\boldsymbol{x}), \ldots, g_m(\boldsymbol{x})$ are convex functions

Note that this implies that the feasible region \mathcal{F} is a convex set

In COP we are minimizing a convex function over a convex set

Implication: If COP is a convex optimization problem, then any local minimum will be a global minimum.

15 Examples of COPs

The Fermat-Weber Problem - COP

$$\min \quad \sum_{i=1}^{m} \boldsymbol{w}_{i} || \boldsymbol{x} - \boldsymbol{c}_{i} ||$$

s.t. $\boldsymbol{x} \in P$

The Ball Circumscription Problem - COP

$$\begin{array}{ll} \min & \delta \\ \text{s.t.} & || \boldsymbol{x} - \boldsymbol{c}_i || \leq \delta, \end{array} \quad i = 1, \ldots, m \\ \end{array}$$

15.1 Is Portfolio Optimization a COP?

$$\max \sum_{\substack{i=1\\i=1}}^{n} \mu_i (z_i + x_i) - \sum_{\substack{i=1\\i=1}}^{n} (a_i |x_i| + b_i x_i^2)$$

s.t. $(\boldsymbol{z} + \boldsymbol{x})' \boldsymbol{\Sigma} (\boldsymbol{z} + \boldsymbol{x}) \leq \sigma^2$
 $z_i + x_i \leq \gamma_i z_i^{total}$
 $-\delta_i \leq x_i \leq \delta_i$
 $-L \leq \sum_{i=1}^{n} P_i x_i \leq L$
 $\sum_{\substack{i=1\\i=1}}^{n} P_i |x_i| \leq t$
 $z_i + x_i \geq 0$

15.2 Quadratically Constrained Problems min $(A_0x + b_0)'(A_0x + b_0) - c'_0x - d_0$ s.t. $(A_ix + b_i)'(A_ix + b_i) - c'_ix - d_i \le 0$ $i = 1, \dots, m$

This is a COP

16 Classification of NLPs

- Linear: $f(x) = c^t x, g_i(x) = A_i^t x b_i, i = 1, ..., m$
- **Unconstrained**: f(x), \Re^n
- Quadratic: $f(x) = c^t x + x^t Q x$, $g_i(x) = A_i^t x b_i$
- Linearly Constrained: $g_i(x) = A_i^t x b_i$
- Quadratically Constrained: $g_i(x) = (A_i x + b_i)'(A_i x + b_i) c'_i x d_i \le 0,$ $i = 1, \dots, m$
- Separable: $f(x) = \sum_j f_j(x_j), g_i(x) = \sum_j g_{ij}(x_j)$

17 Two Main Issues

• Characterization of minima

Necessary — Sufficient Conditions Lagrange Multiplier and KKT Theory SLIDE 48

• Computation of minima via iterative algorithms

Iterative descent Methods Interior Point Methods

18 Summary

- Convex optimization is a powerful modeling framework
- Main message: convex optimization can be solved efficiently

15.093J / 6.255J Optimization Methods Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

-