15.093: Optimization Methods

Lecture 15: Heuristic Methods

1 Outline

- Approximation algorithms
- Local search methods
- Simulated annealing

2 Approximation algorithms

- Algorithm H is an ϵ-approximation algorithm for a minimization problem with optimal cost Z^{*}, if H runs in polynomial time, and returns a feasible solution with $\operatorname{cost} Z_{\mathrm{H}}$:

$$
Z_{\mathrm{H}} \leq(1+\epsilon) Z^{*}
$$

- For a maximization problem

$$
Z_{\mathrm{H}} \geq(1-\epsilon) Z^{*}
$$

2.1 TSP

2.1.1 MST-heuristic

- Triangle inequality

$$
c_{i j} \leq c_{i k}+c_{k j}, \quad \forall i, k, j
$$

- Find a minimum spanning tree with cost Z_{T}
- Construct a closed walk that starts at some node, visits all nodes, returns to the original node, and never uses an arc outside the minimal spanning tree
- Each arc of the spanning tree is used exactly twice
- Total cost of this walk is $2 Z_{T}$
- Because of triangle inequality $Z_{\mathrm{H}} \leq 2 Z_{T}$
- But $Z_{T} \leq Z^{*}$, hence

$$
Z_{\mathrm{H}} \leq 2 Z_{T} \leq 2 Z^{*}
$$

1-approximation algorithm

2.1.2 Matching heuristic

- Find a minimum spanning tree. Let Z_{T} be its cost
- Find the set of odd degree nodes. There is an even number of them. Why?
- Find the minimum matching among those nodes with cost Z_{M}
- Adding spanning tree and minimum matching creates a Eulerian graph, i.e., each node has even degree. Construct a closed walk
- Performance

$$
Z_{\mathbf{H}} \leq Z_{T}+Z_{M} \leq Z^{*}+1 / 2 Z^{*}=3 / 2 Z^{*}
$$

3 Local search methods

- Local Search: replaces current solution with a better solution by slight modification (searching in some neighbourhood) until a local optimal solution is obtained
- Recall the Simplex method

3.1 TSP-2OPT

- Two tours are neighbours if one can be obtained from the other by removing two edges and introducing two new edges

- Each tour has $O\left(n^{2}\right)$ neighbours. Search for better solution among its neighbourhood.
- Performance of 2-OPT on random Euclidean instances

\bullet| Size N | 100 | 1000 | 10000 | 100000 | 1000000 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Matching | 9.5 | 9.7 | 9.9 | 9.9 | - |
| 2 OPT | 4.5 | 4.9 | 5 | 4.9 | 4.9 |

3.2 Extensions

4 Extensions

- Iterated Local Search
- Large neighbourhoods (example 3-OPT)
- Simulated Annealing
- Tabu Search
- Genetic Algorithms

4.1 Large Neighbourhoods

- Within a small neighbourhood, the solution may be locally optimal. Maybe by looking at a bigger neighbourhood, we can find a better solution.
- Increase in computational complexity

4.1.1 TSP Again

3-OPT: Two tours are neighbour if one can be obtained from the other by removing three edges and introducing three new edges

3-OPT improves on 2-OPT performance, with corresponding increase in execution time. Improvement from 4-OPT turns out to be not that substantial compared to 3 -OPT.

5 Simulated Annealing

- Allow the possibility of moving to an inferior solution, to avoid being trapped at local optimum
- Idea: Use of randomization

5.1 Algorithm

- Starting at x, select a random neighbour y in the neighbourhood structure with probability $q_{x y}$

$$
q_{x y} \geq 0, \quad \sum_{y \in \mathcal{N}(x)} q_{x y}=1
$$

- Move to y if $c(y) \leq c(x)$.
- If $c(y)>c(x)$, move to y with probability

$$
e^{-(c(y)-c(x)) / T}
$$

stay in x otherwise

- T is a positive constant, called temperature

5.2 Convergence

- We define a Markov chain.
- Under natural conditions, the long run probability of finding the chain at state x is given by

$$
\frac{e^{-c(x) / T}}{A}
$$

with $A=\sum_{z} e^{-c(z) / T}$

- If $T \rightarrow 0$, then almost all of the steady state probability is concentrated on states at which $c(x)$ is minimum
- But if T is too small, it takes longer to escape from local optimal (accept an inferior move with probability $\left.e^{-(c(y)-c(x)) / T}\right)$. Hence it takes much longer for the markov chain to converge to the steady state distribution

5.3 Cooling schedules

- $T(t)=R / \log (t)$. Convergence guaranteed, but known to be slow empirically.
- Exponential Schedule: $T(t)=T(0) a^{n}$ with $a<1$ and very close to 1 ($a=0.95$ or 0.99) commonly used.

5.4 Knapsack Problem

$$
\max \sum_{i=1}^{n} c_{i} x_{i}: \sum_{i=1}^{n} a_{i} x_{i} \leq b, \quad x_{i} \in\{0,1\}
$$

Let $X=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$

- Neighbourhood Structure: $\mathcal{N}(X)=\left\{Y \in\{0,1\}^{n}: d(X, Y)=1\right\}$. Exactly one entry has been changed

Generate random $Y=\left(y_{1}, \ldots, y_{n}\right)$:

- Choose j uniformly from $1,2, \ldots, n$.
- $y_{i}=x_{i}$ if $i \neq j . y_{j}=1-x_{j}$.
- Accept if $\sum_{i} a_{i} y_{i} \leq b$.

5.4.1 Example

- $c=(135,139,149,150,156,163,173,184,192,201,210,214,221,229,240)$
- $a=(70,73,77,80,82,87,90,94,98,106,110,113,115,118,120)$
- $b=750$
- $X^{*}=(1,0,1,0,1,0,1,1,1,0,0,0,0,1,1)$, with value 1458

Cooling Schedule:

- $T_{0}=1000$
- probability of accepting a downward move is between $0.787\left(c_{i}=240\right)$ and $0.874\left(c_{i}=135\right)$.
- Cooling Schedule: $T(t)=\alpha T(t-1), \alpha=0.999$
- Number of iterations: 1000,5000

Performance:

- 1000 iterations: best solutions obtained in 10 runs vary from 1441 to 1454
- 5000 iterations: best solutions obtained in 10 runs vary from 1448 to 1456.

MIT OpenCourseWare
http://ocw.mit.edu

15.093J / 6.255J Optimization Methods

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

