15.093 Optimization Methods

Lecture 7: Sensitivity Analysis

1 Motivation

1.1 Questions

$$
\begin{array}{cl}
z=\min & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

- How does z depend globally on \boldsymbol{c} ? on \boldsymbol{b} ?
- How does z change locally if either $\boldsymbol{b}, \boldsymbol{c}, \boldsymbol{A}$ change?
- How does z change if we add new constraints, introduce new variables?
- Importance: Insight about LO and practical relevance

2 Outline

1. Global sensitivity analysis
2. Local sensitivity analysis
(a) Changes in \boldsymbol{b}
(b) Changes in \boldsymbol{c}
(c) A new variable is added
(d) A new constraint is added
(e) Changes in \boldsymbol{A}
3. Detailed example

3 Global sensitivity analysis

3.1 Dependence on c

$$
\begin{aligned}
G(\boldsymbol{c})=\min & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{aligned}
$$

$G(\boldsymbol{c})=\min _{i=1, \ldots, N} \boldsymbol{c}^{\prime} \boldsymbol{x}^{i}$ is a concave function of \boldsymbol{c}

3.2 Dependence on b

Primal Dual

$$
\begin{array}{cl}
F(\boldsymbol{b})=\min & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

$$
F(\boldsymbol{b})=\begin{array}{ll}
\max & \boldsymbol{p}^{\prime} \boldsymbol{b} \\
\text { s.t. } & \boldsymbol{p}^{\prime} \boldsymbol{A} \leq \boldsymbol{c}^{\prime}
\end{array}
$$

$F(\boldsymbol{b})=\max _{i=1, \ldots, N}\left(\boldsymbol{p}^{i}\right)^{\prime} \boldsymbol{b}$ is a convex function of \boldsymbol{b}

4 Local sensitivity analysis

$$
\begin{array}{cl}
z=\min & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

What does it mean that a basis \boldsymbol{B} is optimal?

1. Feasibility conditions: $\quad \boldsymbol{B}^{-1} \boldsymbol{b} \geq \mathbf{0}$
2. Optimality conditions: $\quad c^{\prime}-c_{B}^{\prime} B^{-1} A \geq 0^{\prime}$

- Suppose that there is a change in either \boldsymbol{b} or \boldsymbol{c} for example
- How do we find whether \boldsymbol{B} is still optimal?
- Need to check whether the feasibility and optimality conditions are satisfied

5 Local sensitivity analysis

5.1 Changes in b

b_{i} becomes $b_{i}+\Delta$, i.e.
$(P) \min c^{\prime} \boldsymbol{x}$
s.t. $\quad \boldsymbol{A x}=\boldsymbol{b} \quad \rightarrow$ $\boldsymbol{x} \geq \mathbf{0}$ $\left(P^{\prime}\right) \min \quad \boldsymbol{c}^{\prime} \boldsymbol{x}$
s.t. $\quad \boldsymbol{A x}=\boldsymbol{b}+\Delta \boldsymbol{e}_{i}$ $x \geq 0$

- B optimal basis for (P)
- Is \boldsymbol{B} optimal for $\left(P^{\prime}\right)$?

Need to check:

1. Feasibility: $\boldsymbol{B}^{\mathbf{- 1}}\left(\boldsymbol{b}+\Delta e_{i}\right) \geq \mathbf{0}$
2. Optimality: $\boldsymbol{c}^{\prime}-\boldsymbol{c}_{\boldsymbol{B}}^{\prime} \boldsymbol{B}^{-1} \boldsymbol{A} \geq \mathbf{0}^{\prime}$

Observations:

1. Changes in \boldsymbol{b} affect feasibility
2. Optimality conditions are not affected

$$
\begin{aligned}
& \boldsymbol{B}^{-1}\left(\boldsymbol{b}+\Delta \boldsymbol{e}_{i}\right) \geq \mathbf{0} \\
& \beta_{i j}=\left[\boldsymbol{B}^{-1}\right]_{i j} \\
& \bar{b}_{j}=\left[\boldsymbol{B}^{-1} \boldsymbol{b}\right]_{j} \\
& \text { Thus, } \\
& \left(\boldsymbol{B}^{-\mathbf{1}} \boldsymbol{b}\right)_{j}+\Delta\left(\boldsymbol{B}^{-1} \boldsymbol{e}_{i}\right)_{j} \geq 0 \Rightarrow \quad \bar{b}_{j}+\Delta \beta_{j i} \geq 0 \Rightarrow
\end{aligned}
$$

$$
\max _{\beta_{j i}>0}\left(-\frac{\bar{b}_{j}}{\beta_{j i}}\right) \leq \Delta \leq \min _{\beta_{j i}<0}\left(-\frac{\bar{b}_{j}}{\beta_{j i}}\right)
$$

$$
\underline{\Delta} \leq \Delta \leq \bar{\Delta}
$$

Within this range

- Current basis \boldsymbol{B} is optimal
- $z=\boldsymbol{c}_{B}^{\prime} \boldsymbol{B}^{-1}\left(\boldsymbol{b}+\Delta \boldsymbol{e}_{i}\right)=\boldsymbol{c}_{B}^{\prime} \boldsymbol{B}^{-1} \boldsymbol{b}+\Delta p_{i}$
- What if $\Delta=\bar{\Delta}$?
- What if $\Delta>\bar{\Delta}$?

Current solution is infeasible, but satisfies optimality conditions \rightarrow use dual simplex method

5.2 Changes in c

$c_{j} \rightarrow c_{j}+\Delta$
Is current basis \boldsymbol{B} optimal?
Need to check:

1. Feasibility: $\boldsymbol{B}^{-1} \boldsymbol{b} \geq \mathbf{0}$, unaffected
2. Optimality: $\boldsymbol{c}^{\prime}-\boldsymbol{c}_{\boldsymbol{B}}^{\prime} \boldsymbol{B}^{-\mathbf{1}} \boldsymbol{A} \geq \mathbf{0}^{\prime}$, affected

There are two cases:

- x_{j} basic
- x_{j} nonbasic

5.2.1 x_{j} nonbasic

\boldsymbol{c}_{B} unaffected
$\left(c_{j}+\Delta\right)-\boldsymbol{c}_{B}^{\prime} \boldsymbol{B}^{-1} \boldsymbol{A}_{j} \geq 0 \Rightarrow \bar{c}_{j}+\Delta \geq 0$
Solution optimal if $\Delta \geq-\bar{c}_{j}$
What if $\Delta=-\bar{c}_{j}$?
What if $\Delta<-\bar{c}_{j}$?

5.2.2 x_{j} basic

$$
\boldsymbol{c}_{B} \leftarrow \hat{\boldsymbol{c}}_{B}=\boldsymbol{c}_{B}+\Delta \boldsymbol{e}_{j}
$$

Then,

$$
\left[\boldsymbol{c}^{\prime}-\hat{\boldsymbol{c}}_{\boldsymbol{B}}^{\prime} \boldsymbol{B}^{-1} \boldsymbol{A}\right]_{i} \geq 0 \Rightarrow c_{i}-\left[\boldsymbol{c}_{B}+\Delta \boldsymbol{e}_{j}\right]^{\prime} \boldsymbol{B}^{-1} \boldsymbol{A}_{i} \geq 0
$$

$\left[\boldsymbol{B}^{-\mathbf{1}} \boldsymbol{A}\right]_{j i}=\bar{a}_{j i}$

$$
\bar{c}_{i}-\Delta \bar{a}_{j i} \geq 0 \Rightarrow \max _{\bar{a}_{j i}<0} \frac{\bar{c}_{i}}{\bar{a}_{j i}} \leq \Delta \leq \min _{\bar{a}_{j i}>0} \frac{\bar{c}_{i}}{\bar{a}_{j i}}
$$

What if Δ is outside this range? use primal simplex

5.3 A new variable is added

$$
\begin{array}{lllll}
\min & \boldsymbol{c}^{\prime} \boldsymbol{x} & \min & \boldsymbol{c}^{\prime} \boldsymbol{x}+c_{n+1} \boldsymbol{x}_{n+1} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \quad \rightarrow \quad \text { s.t. } & \boldsymbol{A} \boldsymbol{x}+\boldsymbol{A}_{n+1} \boldsymbol{x}_{n+1}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0} & & \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

In the new problem is $x_{n+1}=0$ or $x_{n+1}>0$? (i.e., is the new activity profitable?)
Current basis \boldsymbol{B}. Is solution $\boldsymbol{x}=\boldsymbol{B}^{\boldsymbol{- 1}} \boldsymbol{b}, x_{n+1}=0$ optimal?

- Feasibility conditions are satisfied
- Optimality conditions:

$$
c_{n+1}-\boldsymbol{c}_{\boldsymbol{B}}^{\prime} \boldsymbol{B}^{-\mathbf{1}} \boldsymbol{A}_{n+1} \geq 0 \Rightarrow c_{n+1}-\boldsymbol{p}^{\prime} \boldsymbol{A}_{n+1} \geq 0 ?
$$

- If yes, solution $\boldsymbol{x}=\boldsymbol{B}^{\boldsymbol{- 1}} \boldsymbol{b}, x_{n+1}=0$ optimal
- Otherwise, use primal simplex

5.4 A new constraint is added

$$
\begin{array}{clcl}
\text { min } & \boldsymbol{c}^{\prime} \boldsymbol{x} & \min & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \quad \rightarrow \quad \text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0} & & \boldsymbol{a}_{m+1}^{\prime} \boldsymbol{x}=b_{m+1} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

If current solution feasible, it is optimal; otherwise, apply dual simplex

5.5 Changes in A

- Suppose $a_{i j} \leftarrow a_{i j}+\Delta$
- Assume \boldsymbol{A}_{j} does not belong in the basis
- Feasibility conditions: $\boldsymbol{B}^{\boldsymbol{1}} \boldsymbol{b} \geq \mathbf{0}$, unaffected
- Optimality conditions: $c_{l}-\boldsymbol{c}_{\boldsymbol{B}}^{\prime} \boldsymbol{B}^{\boldsymbol{1}} \boldsymbol{A}_{l} \geq 0, l \neq j$, unaffected
- Optimality condition: $c_{j}-\boldsymbol{p}^{\prime}\left(\boldsymbol{A}_{j}+\Delta \boldsymbol{e}_{i}\right) \geq 0 \Rightarrow \bar{c}_{j}-\Delta p_{i} \geq 0$
- What if \boldsymbol{A}_{j} is basic? BT, Exer. 5.3

6 Example

6.1 A Furniture company

- A furniture company makes desks, tables, chairs
- The production requires wood, finishing labor, carpentry labor

	Desk	Table (ft)	Chair	Avail.
Profit	60	30	20	-
Wood (ft)	8	6	1	48
Finish hrs.	4	2	1.5	20
Carpentry hrs.	2	1.5	0.5	8

6.2 Formulation

Decision variables:
$x_{1}=\#$ desks,$x_{2}=\#$ tables, $x_{3}=\#$ chairs

$$
\begin{array}{lll}
\max & 60 x_{1}+30 x_{2}+20 x_{3} & \\
\text { s.t. } & 8 x_{1}+6 x_{2}+x_{3} & \leq 48 \\
& 4 x_{1}+2 x_{2}+1.5 x_{3} & \leq 20 \\
& 2 x_{1}+1.5 x_{2}+0.5 x_{3} & \leq 8 \\
& x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

6.3 Simplex tableaus

Initial tableau:		s_{1}	s_{2}	s_{3}	x_{1}	x_{2}	x_{3}
	0	0	0	0	-60	-30	-20
$s_{1}=$	48	1			8	6	1
$s_{2}=$	20		1		4	2	1.5
$s_{2}=$	8			1	2	1.5	0.5

Final tableau: \begin{tabular}{rl|rccccc|}
\hline \& \& s_{1} \& s_{2} \& s_{3} \& x_{1} \& x_{2} \& x_{3}

\cline { 2 - 8 } \& 280 \& 0 \& 10 \& 10 \& 0 \& 5 \& 0

\hline 24 \& 1 \& 2 \& -8 \& 0 \& -2 \& 0

s_{1} \& $=$| 2 |
| ---: |
| 8 |

x_{1} \& $=$| 2 |
| ---: |
| 2 | \& -4 \& 0 \& -2 \& 1

2 \& 0 \& -0.5 \& 1.5 \& 1 \& 1.25 \& 0

\hline
\end{tabular}

6.4 Information in tableaus

- What is \boldsymbol{B} ?

$$
\boldsymbol{B}=\left[\begin{array}{ccc}
1 & 1 & 8 \\
0 & 1.5 & 4 \\
0 & 0.5 & 2
\end{array}\right]
$$

- What is \boldsymbol{B}^{-1} ?

$$
\boldsymbol{B}^{-1}=\left[\begin{array}{ccc}
1 & 2 & -8 \\
0 & 2 & -4 \\
0 & -0.5 & 1.5
\end{array}\right]
$$

- What is the optimal solution?
- What is the optimal solution value?
- Is it a bit surprising?
- What is the optimal dual solution?
- What is the shadow price of the wood constraint?
- What is the shadow price of the finishing hours constraint?
- What is the reduced cost for x_{2} ?

6.5 Shadow prices

Why the dual price of the finishing hours constraint is 10 ?

- Suppose that finishing hours become 21 (from 20).
- Currently only desks $\left(x_{1}\right)$ and chairs $\left(x_{3}\right)$ are produced
- Finishing and carpentry hours constraints are tight
- Does this change leaves current basis optimal?
$\left.\begin{array}{lll|l|l} & & \\ \text { New solution: } & 8 x_{1}+x_{3}+s_{1}=48 \\ 4 x_{1}+1.5 x_{3} & =21 \\ & 2 x_{1}+0.5 x_{3} & =8\end{array} \quad \Rightarrow \quad \begin{array}{l}\text { New } \\ s_{1}=26 \\ x_{1}=1.5\end{array}\right] \begin{gathered}\text { Previous } \\ x_{3}=10\end{gathered} \quad 8$
Solution change:

$$
z^{\prime}-z=(60 * 1.5+20 * 10)-(60 * 2+20 * 8)=10
$$

- Suppose you can hire 1 h of finishing overtime at $\$ 7$. Would you do it?
- Another check

$$
\begin{gathered}
\boldsymbol{c}_{\boldsymbol{B}}^{\prime} \boldsymbol{B}^{-\mathbf{1}}=(0,-20,-60)\left(\begin{array}{ccc}
1 & 2 & -8 \\
0 & 2 & -4 \\
0 & -0.5 & 1.5
\end{array}\right)= \\
(0,-10,-10)
\end{gathered}
$$

6.6 Reduced costs

- What does it mean that the reduced cost for x_{2} is 5 ?
- Suppose you are forced to produce $x_{2}=1$ (1 table)
- How much will the profit decrease?

$$
\begin{array}{rlll}
8 x_{1}+x_{3}+s_{1} & +6 \cdot 1 & =48 \\
4 x_{1}+1.5 x_{3} & +2 \cdot 1 & =20 & \Rightarrow
\end{array} \begin{aligned}
& s_{1}=26 \\
& x_{1}=0.75 \\
& 2 x_{1}+0.5 x_{3} \\
& +1.5 \cdot 1
\end{aligned}=8 \quad \begin{aligned}
& x_{3}=10 \\
& z^{\prime}-z=(60 * 0.75+20 * 10)-(60 * 2+20 * 8+30 * 1)=-35+30=-5
\end{aligned}
$$

Another way to calculate the same thing: If $x_{2}=1$

Direct profit from table	+30
Decrease wood by -6	$-6 * 0=0$
Decrease finishing hours by -2	$-2 * 10=-20$
Decrease carpentry hours by -1.5	$-1.5 * 10=-15$
Total Effect	-5

Suppose profit from tables increases from $\$ 30$ to $\$ 34$. Should it be produced? At $\$ 35$? At $\$ 36$?

6.7 Cost ranges

Suppose profit from desks becomes $60+\Delta$. For what values of Δ does current basis remain optimal?
Optimality conditions:

$$
c_{j}-c_{B}^{\prime} B^{-1} A_{j} \geq 0 \Rightarrow
$$

$$
\begin{gathered}
\boldsymbol{p}^{\prime}=\boldsymbol{c}_{\boldsymbol{B}}^{\prime} \boldsymbol{B}^{-1}=[0,-20,-(60+\Delta)]\left[\begin{array}{ccc}
1 & 2 & -8 \\
0 & 2 & -4 \\
0 & -0.5 & 1.5
\end{array}\right] \\
=-[0, \quad 10-0.5 \Delta, \quad 10+1.5 \Delta]
\end{gathered}
$$

s_{1}, x_{3}, x_{1} are basic
Reduced costs of non-basic variables
$\bar{c}_{2}=c_{2}-\boldsymbol{p}^{\prime} \boldsymbol{A}_{2}=-30+[0,10-0.5 \Delta, 10+1.5 \Delta]\left[\begin{array}{c}6 \\ 2 \\ 1.5\end{array}\right]=5+1.25 \Delta$
$\bar{c}_{s_{2}}=10-0.5 \Delta$
$\bar{c}_{s_{3}}=10+1.5 \Delta$
Current basis optimal:

$$
\left.\begin{array}{l}
5+1.25 \Delta \geq 0 \\
10-0.5 \Delta \geq 0 \\
10+1.5 \Delta \geq 0
\end{array}\right\}--4 \leq \Delta \leq 20
$$

$\Rightarrow 56 \leq c_{1} \leq 80$ solution remains optimal.
If $c_{1}<56$, or $c_{1}>80$ current basis is not optimal.
Suppose $c_{1}=100(\Delta=40)$ What would you do?

6.8 Rhs ranges

Suppose finishing hours change by Δ becoming $(20+\Delta)$ What happens?

$$
\begin{aligned}
& \boldsymbol{B}^{-1}\left[\begin{array}{c}
48 \\
20+\Delta \\
8
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & -8 \\
0 & 2 & -4 \\
0 & -0.5 & 1.5
\end{array}\right]\left[\begin{array}{c}
48 \\
20+\Delta \\
8
\end{array}\right] \\
& \quad=\left[\begin{array}{c}
24+2 \Delta \\
8+2 \Delta \\
2-0.5 \Delta
\end{array}\right] \geq 0 \\
& \Rightarrow-4 \leq \Delta \leq 4 \text { current basis optimal }
\end{aligned}
$$

Note that even if current basis is optimal, optimal solution variables change:

$$
\begin{aligned}
& s_{1}=24+2 \Delta \\
& x_{3}=8+2 \Delta \\
& x_{1}=2-0.5 \Delta \\
& z=60(2-0.5 \Delta)+20(8+2 \Delta)=280+10 \Delta
\end{aligned}
$$

Suppose $\Delta=10$ then
$\left(\begin{array}{c}s_{1} \\ x_{3} \\ x_{1}\end{array}\right)=\left(\begin{array}{c}44 \\ 25 \\ -3\end{array}\right) \leftarrow$ inf. (Use dual simplex)

6.9 New activity

Suppose the company has the opportunity to produce stools
Profit $\$ 15$; requires 1 ft of wood, 1 finishing hour, 1 carpentry hour Should the company produce stools?

$$
\begin{array}{llllllll}
\max & 60 x_{1} & +30 x_{2} & +20 x_{3} & +15 x_{4} & & & \\
& 8 x_{1} & +6 x_{2} & +x_{3} & +x_{4} & +s_{1} & & \\
& 4 x_{1} & +2 x_{2} & +1.5 x_{3} & +x_{4} & & +s_{2} & \\
& 2 x_{1} & +1.5 x_{2} & +0.5 x_{3} & +x_{4} & & & +s_{3}
\end{array}=8=88
$$

$$
c_{4}-c_{B}^{\prime} B^{-1} A_{4}=-15-(0,-10,-10)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=5 \geq 0
$$

Current basis still optimal. Do not produce stools

MIT OpenCourseWare

15.093J / 6.255J Optimization Methods

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

