15.093 Optimization Methods

Lecture 7: Sensitivity Analysis

1 Motivation

1.1 Questions

- How does z depend globally on c? on b?
- How does z change locally if either **b**, **c**, **A** change?
- How does z change if we add new constraints, introduce new variables?
- Importance: Insight about LO and practical relevance

2 Outline

- 1. Global sensitivity analysis
- 2. Local sensitivity analysis
 - (a) Changes in **b**
 - (b) Changes in c
 - (c) A new variable is added
 - (d) A new constraint is added
 - (e) Changes in A
- 3. Detailed example

3 Global sensitivity analysis

3.1 Dependence on c

 $G(c) = \min_{\substack{\mathbf{s.t.} \\ \mathbf{s.t.} \\ x \ge \mathbf{0}}} c'x$

 $G(\boldsymbol{c}) = \min_{i=1,\dots,N} \boldsymbol{c'} \boldsymbol{x}^i$ is a concave function of \boldsymbol{c}

3.2 Dependence on b

 $\begin{array}{ll} \text{Primal} & \text{Dual} \\ F(\boldsymbol{b}) = \min & \boldsymbol{c}' \boldsymbol{x} \\ \text{s.t.} & \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array} \qquad \begin{array}{l} \text{Dual} \\ F(\boldsymbol{b}) = \max & \boldsymbol{p}' \boldsymbol{b} \\ \text{s.t.} & \boldsymbol{p}' \boldsymbol{A} \leq \boldsymbol{c}' \end{array}$

 $F(\mathbf{b}) = \max_{i=1,\dots,N} (\mathbf{p}^i)' \mathbf{b}$ is a convex function of \mathbf{b}

SLIDE 1

SLIDE 3

SLIDE 4

4 Local sensitivity analysis

What does it mean that a basis \boldsymbol{B} is optimal?

- 1. Feasibility conditions: $B^{-1}b \ge 0$
- 2. Optimality conditions: $c' c'_B B^{-1} A \ge 0'$

SLIDE 6

SLIDE 7

SLIDE 8

SLIDE 9

SLIDE 5

- Suppose that there is a change in either b or c for example
- How do we find whether **B** is still optimal?
- Need to check whether the feasibility and optimality conditions are satisfied

5 Local sensitivity analysis

5.1 Changes in b

 $\begin{array}{cccc} b_i \text{ becomes } b_i + \Delta, \text{ i.e.} \\ (P) & \min & c'x \\ & \text{ s.t. } & \boldsymbol{Ax} = \boldsymbol{b} \\ & \boldsymbol{x} \geq \boldsymbol{0} \end{array} \xrightarrow{} & \text{ s.t. } & \boldsymbol{Ax} = \boldsymbol{b} + \Delta \boldsymbol{e}_i \\ & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

- **B** optimal basis for (P)
- Is **B** optimal for (P')?

Need to check:

- 1. Feasibility: $B^{-1}(b + \Delta e_i) \ge 0$
- 2. Optimality: $c' c'_B B^{-1} A \ge 0'$

Observations:

- 1. Changes in \boldsymbol{b} affect feasibility
- 2. Optimality conditions are not affected

$$\begin{aligned} \boldsymbol{B}^{-1}(\boldsymbol{b} + \Delta \boldsymbol{e}_i) &\geq \boldsymbol{0} \\ \boldsymbol{\beta}_{ij} &= [\boldsymbol{B}^{-1}]_{ij} \\ \overline{b}_j &= [\boldsymbol{B}^{-1}\boldsymbol{b}]_j \\ \text{Thus,} \\ (\boldsymbol{B}^{-1}\boldsymbol{b})_j + \Delta (\boldsymbol{B}^{-1}\boldsymbol{e}_i)_j &\geq 0 \Rightarrow \quad \overline{b}_j + \Delta \boldsymbol{\beta}_{ji} \geq 0 \Rightarrow \end{aligned}$$

$$\max_{\beta_{ji}>0} \left(-\frac{\overline{b}_j}{\beta_{ji}}\right) \le \Delta \le \min_{\beta_{ji}<0} \left(-\frac{\overline{b}_j}{\beta_{ji}}\right)$$

SLIDE 10
$$\underline{\Delta} \le \Delta \le \overline{\Delta}$$

Within this range

- Current basis B is optimal
- $z = c'_B B^{-1}(b + \Delta e_i) = c'_B B^{-1}b + \Delta p_i$
- What if $\Delta = \overline{\Delta}$?
- What if $\Delta > \overline{\Delta}$?

Current solution is infeasible, but satisfies optimality conditions \rightarrow use dual simplex method

5.2 Changes in c

 $c_j \rightarrow c_j + \Delta$ Is current basis **B** optimal? Need to check:

- 1. Feasibility: $B^{-1}b \ge 0$, unaffected
- 2. Optimality: $c' c'_B B^{-1} A \ge 0'$, affected

There are two cases:

- x_j basic
- x_j nonbasic

5.2.1 x_j nonbasic

 $\begin{array}{l} \boldsymbol{c}_{B} \text{ unaffected} \\ (c_{j} + \Delta) - \boldsymbol{c}'_{B} \boldsymbol{B^{-1}} \boldsymbol{A}_{j} \geq 0 \Rightarrow \overline{c}_{j} + \Delta \geq 0 \\ \text{Solution optimal if } \Delta \geq -\overline{c}_{j} \\ \text{What if } \Delta = -\overline{c}_{j}? \\ \text{What if } \Delta < -\overline{c}_{j}? \end{array}$

Slide 11

5.2.2 x_j basic

SLIDE 13

$$oldsymbol{c}_B \leftarrow oldsymbol{\hat{c}}_B = oldsymbol{c}_B + \Delta oldsymbol{e}_B$$

Then,

$$[\boldsymbol{c'} - \hat{\boldsymbol{c}}_{\boldsymbol{B}}^{\prime}\boldsymbol{B^{-1}}\boldsymbol{A}]_i \ge 0 \Rightarrow c_i - [\boldsymbol{c}_{\boldsymbol{B}} + \Delta \boldsymbol{e}_j]^{\prime}\boldsymbol{B}^{-1}\boldsymbol{A}_i \ge 0$$

 $[\boldsymbol{B^{-1}A}]_{ji} = \overline{a}_{ji}$

$$\overline{c}_i - \Delta \overline{a}_{ji} \ge 0 \Rightarrow \max_{\overline{a}_{ji} < 0} \frac{\overline{c}_i}{\overline{a}_{ji}} \le \Delta \le \min_{\overline{a}_{ji} > 0} \frac{\overline{c}_i}{\overline{a}_{ji}}$$

What if Δ is outside this range? use primal simplex

5.3 A new variable is added

SLIDE 14

In the new problem is $x_{n+1} = 0$ or $x_{n+1} > 0$? (i.e., is the new activity profitable?) SLIDE 15 Current basis **B**. Is solution $\mathbf{x} = \mathbf{B}^{-1}\mathbf{b}, x_{n+1} = 0$ optimal?

- Feasibility conditions are satisfied
- Optimality conditions:

$$c_{n+1} - c'_B B^{-1} A_{n+1} \ge 0 \Rightarrow c_{n+1} - p' A_{n+1} \ge 0$$
?

- If yes, solution $\boldsymbol{x} = \boldsymbol{B^{-1}b}, x_{n+1} = 0$ optimal
- Otherwise, use primal simplex

5.4 A new constraint is added

SLIDE 16

min s.t.	$egin{array}{ll} c'x\ Ax=b\ x\geq 0 \end{array}$	\rightarrow	min s.t.	$egin{aligned} oldsymbol{c'x} oldsymbol{Ax} &= oldsymbol{b} \ oldsymbol{a'_{m+1}x} &= b_{m+1} \ oldsymbol{x} &\geq oldsymbol{0} \end{aligned}$
-------------	--	---------------	-------------	--

If current solution feasible, it is optimal; otherwise, apply dual simplex

5.5 Changes in A

- Suppose $a_{ij} \leftarrow a_{ij} + \Delta$
- Assume A_j does not belong in the basis
- Feasibility conditions: $B^{-1}b \ge 0$, unaffected
- Optimality conditions: $c_l c'_B B^{-1} A_l \ge 0, \ l \ne j$, unaffected
- Optimality condition: $c_j p'(A_j + \Delta e_i) \ge 0 \Rightarrow \overline{c}_j \Delta p_i \ge 0$
- What if A_j is basic? BT, Exer. 5.3

6 Example

6.1 A Furniture company

- A furniture company makes desks, tables, chairs
- The production requires wood, finishing labor, carpentry labor

	Desk	Table (ft)	Chair	Avail.
Profit	60	30	20	-
Wood (ft)	8	6	1	48
Finish hrs.	4	2	1.5	20
Carpentry hrs.	2	1.5	0.5	8

6.2 Formulation

Decision variables:

 $x_1 = \#$ desks, $x_2 = \#$ tables, $x_3 = \#$ chairs

 $\begin{array}{rll} \max & 60x_1 + 30x_2 + 20x_3 \\ {\rm s.t.} & 8x_1 + 6x_2 + x_3 & \leq 48 \\ & 4x_1 + 2x_2 + 1.5x_3 & \leq 20 \\ & 2x_1 + 1.5x_2 + 0.5x_3 & \leq 8 \\ & x_1, x_2, x_3 & \geq 0 \end{array}$

6.3 Simplex tableaus

Initial tableau:		s_1	s_2	s_3	x_1	x_2	x_3
	0	0	0	0	-60	-30	-20
$s_1 =$	48	1			8	6	1
$s_2 =$	20		1		4	2	1.5
$s_2 =$	8			1	2	1.5	0.5

SLIDE 20

SLIDE 18

SLIDE 19

Final tableau

ableau:		s_1	s_2	s_3	x_1	x_2	x_3
	280	0	10	10	0	5	0
$s_1 =$	24	1	2	-8	0	-2	0
$x_3 =$	8	0	2	-4	0	-2	1
$x_1 =$	2	0	-0.5	1.5	1	1.25	0

6.4 Information in tableaus

• What is **B**?

	1	1	8	
B =	0	1.5	4	
	0	0.5	2	

• What is B^{-1} ?

	1	2	-8]
$B^{-1} =$	0	2	-4
	0	-0.5	1.5

SLIDE 22

SLIDE 21

- What is the optimal solution?
- What is the optimal solution value?
- Is it a bit surprising?
- What is the optimal dual solution?
- What is the shadow price of the wood constraint?
- What is the shadow price of the finishing hours constraint?
- What is the reduced cost for x_2 ?

6.5 Shadow prices

Why the dual price of the finishing hours constraint is 10?

- Suppose that finishing hours become 21 (from 20).
- Currently only desks (x_1) and chairs (x_3) are produced
- Finishing and carpentry hours constraints are tight
- Does this change leaves current basis optimal?

SLIDE	24

SLIDE 23

New solution:	$8x_1 + x_3 + s_1$ $4x_1 + 1.5x_3$	= 48 = 21 =	\Rightarrow	$s_1 = 26$ $x_1 = 1.5$	$\frac{24}{2}$		
Solution change:	$2x_1 + 0.5x_3$	= 8		$x_3 = 10$	8		
z' - z = (60 * 1.5 + 20 * 10) - (60 * 2 + 20 * 8) = 10							

New

Previous

- Suppose you can hire 1h of finishing overtime at \$7. Would you do it?
- Another check

$$c'_{B}B^{-1} = (0, -20, -60) \begin{pmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{pmatrix} = (0, -10, -10)$$

6.6 Reduced costs

- What does it mean that the reduced cost for x_2 is 5?
- Suppose you are forced to produce $x_2 = 1$ (1 table)
- How much will the profit decrease?

$8x_1 + x_3 + s_1$	$+ 6 \cdot 1$	= 48		$s_1 = 26$
$4x_1 + 1.5x_3$	$+ 2 \cdot 1$	= 20	\Rightarrow	$x_1 = 0.75$
$2x_1 + 0.5x_3$	$+ 1.5 \cdot 1$	= 8		$x_3 = 10$

z'-z = (60*0.75+20*10) - (60*2+20*8+30*1) = -35+30 = -5 SLIDE 27 Another way to calculate the same thing: If $x_2 = 1$

Direct profit from table	+30
Decrease wood by -6	-6 * 0 = 0
Decrease finishing hours by -2	-2 * 10 = -20
Decrease carpentry hours by -1.5	-1.5 * 10 = -15
Total Effect	-5

Suppose profit from tables increases from \$30 to \$34. Should it be produced? At \$35? At \$36?

6.7 Cost ranges

Suppose profit from desks becomes $60 + \Delta$. For what values of Δ does current basis remain optimal? Optimality conditions:

$$c_j - c'_B B^{-1} A_j \ge 0 \Rightarrow$$
$$p' = c'_B B^{-1} = [0, -20, -(60 + \Delta)] \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix}$$
$$= -[0, \quad 10 - 0.5\Delta, \quad 10 + 1.5\Delta]$$

SLIDE 29

SLIDE 28

SLIDE 26

 s_1, x_3, x_1 are basic

Reduced costs of non-basic variables

$$\overline{c}_2 = c_2 - p' A_2 = -30 + [0, 10 - 0.5\Delta, 10 + 1.5\Delta] \begin{bmatrix} 6\\ 2\\ 1.5 \end{bmatrix} = 5 + 1.25\Delta$$
$$\overline{c}_{s_2} = 10 - 0.5\Delta$$

 $\overline{c}_{s_3} = 10 + 1.5\Delta$ Current basis optimal:

$$5 + 1.25\Delta \ge 0 \\ 10 - 0.5\Delta \ge 0 \\ 10 + 1.5\Delta \ge 0$$

$$-4 \le \Delta \le 20$$

 $\Rightarrow 56 \le c_1 \le 80$ solution remains optimal. If $c_1 < 56$, or $c_1 > 80$ current basis is not optimal. Suppose $c_1 = 100(\Delta = 40)$ What would you do?

6.8 Rhs ranges

Suppose finishing hours change by Δ becoming $(20 + \Delta)$ What happens?

$$\mathbf{B}^{-1} \begin{bmatrix} 48\\ 20+\Delta\\ 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -8\\ 0 & 2 & -4\\ 0 & -0.5 & 1.5 \end{bmatrix} \begin{bmatrix} 48\\ 20+\Delta\\ 8 \end{bmatrix}$$
$$= \begin{bmatrix} 24+2\Delta\\ 8+2\Delta\\ 2-0.5\Delta \end{bmatrix} \ge 0$$
$$\Rightarrow -4 \le \Delta \le 4 \text{ current basis optimal}$$
SLIDE 31

Note that even if current basis is optimal, optimal solution variables change:

$$s_{1} = 24 + 2\Delta$$

$$x_{3} = 8 + 2\Delta$$

$$x_{1} = 2 - 0.5\Delta$$

$$z = 60(2 - 0.5\Delta) + 20(8 + 2\Delta) = 280 + 10\Delta$$

SLIDE 32

SLIDE 30

SLIDE 33

Suppose
$$\Delta = 10$$
 then
 $\begin{pmatrix} s_1 \\ x_3 \\ x_1 \end{pmatrix} = \begin{pmatrix} 44 \\ 25 \\ -3 \end{pmatrix} \leftarrow \text{ inf. (Use dual simplex)}$
SLI

6.9 New activity

Suppose the company has the opportunity to produce stools Profit \$15; requires 1 ft of wood, 1 finishing hour, 1 carpentry hour Should the company produce stools?

\max	$60x_1$	$+30x_{2}$	$+20x_{3}$	$+15x_{4}$				
	$8x_1$	$+6x_{2}$	$+x_{3}$	$+x_{4}$	$+s_1$			= 48
	$4x_1$	$+2x_{2}$	$+1.5x_{3}$	$+x_4$		$+s_{2}$		= 20
	$2x_1$	$+1.5x_{2}$	$+0.5x_{3}$	$+x_4$			$+s_{3}$	= 8
				$x_i > 0$				

$$c_4 - c'_B B^{-1} A_4 = -15 - (0, -10, -10) \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} = 5 \ge 0$$

Current basis still optimal. Do not produce stools

15.093J / 6.255J Optimization Methods Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.