2.098/6.255/15.093J Optimization Methods, Fall 2005
 (Brief) Solutions to Final Exam, Fall 2003

1.
2. False. The problem of minimizing a convex, piecewise linear function over a polyhedron can be formulated as a LP.
3. True. The dual of the problem is $\max \{0: p \leq 1\}$. $p=1$ is nondegenerate, for example.
4. False. Consider $\min \left\{-x_{1}-x_{2}: x_{1}+x_{2}=1, x_{1} \geq 0, x_{2} \geq 0\right\}$.
5. False. Take the primal-dual pair in part 2 of this question, for example.
6. False. Barrier interior-point methods are unaffected by degeneracy; see BT p. 439.
7. True. KKT conditions hold for a local minimum under the linearly independent constraint qualification condition (LICQ).
8. False. Barrier interior-point methods find an interior point of the face of optimal solutions. See BT p. 537 and p. 544 for a discussion on the numerical behavior of the simplex and interior point methods.
9. True. BT Theorem 7.5.
10. True. Lecture 18, Slides 40-50.
11. True. Recall the zig-zag phenomenon shown in lecture.
12.

(a) Proof by contradiction. Assume that f is strictly convex. Suppose all optimal solutions are not extreme points of P. Consider an arbitrary optimal solution, $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$. Since x^{*} is not an extreme point, $x^{*}=\lambda y+(1-\lambda) z$ for some $y=\left(y_{1}, \ldots, y_{n}\right), z=\left(z_{1}, \ldots, z_{n}\right) \in P$ and $\lambda \in[0,1]$. Therefore,

$$
\lambda \sum_{j=1}^{n} f\left(y_{i}\right)+(1-\lambda) \sum_{j=1}^{n} f\left(z_{i}\right)<\sum_{j=1}^{n} f\left(x_{i}^{*}\right)
$$

so either y or z must produce a lower value than x^{*}. This is a contradiction.
If f is not strictly convex, you can repeat the above argument in conjunction with an argument like in the proof of BT Theorem $2.6(\mathrm{~b}) \Rightarrow(\mathrm{a}))$ to show that $\sum_{k=1}^{p} \lambda_{i} \sum_{i=1}^{n} f\left(x_{i}^{k}\right) \leq$ $\sum_{i=1}^{n} f\left(x_{i}^{*}\right)$ where x^{k} is an extreme point for some $k=1, \ldots, p$.
(b) The problem we are concerned with is

$$
\begin{aligned}
\operatorname{minimize} & \sum_{j=1}^{n} f\left(x_{j}\right) \\
\text { subject to } & A x=b \\
& x_{j} \in\{0,1\}
\end{aligned}
$$

Let $c=f(1)$ and $d=f(0)$. Since $x_{j} \in\{0,1\}, f\left(x_{j}\right)=d+(c-d) x_{j}$. Therefore, the objective function can be written as

$$
\sum_{j=1}^{n} f\left(x_{j}\right)=\sum_{j=1}^{n}\left(d+(c-d) x_{j}\right)=n d+(c-d) \sum_{j=1}^{n} x_{j}
$$

which is linear in x.
3. Without loss of generality, assume Q and Σ are symmetric, since they only appear in quadratic forms.
(a) KKT conditions: there exists a multiplier $u \geq 0$ such that $(c+Q x)+u(d+\Sigma x)=0$, and $u\left(d^{\prime} x+\frac{1}{2} x^{\prime} \Sigma x-a\right)=0$.
(b) Use Newton's method to solve the system of equations prescribed by the KKT conditions.
(c) An equivalent optimization problem is

$$
\begin{aligned}
\operatorname{minimize} & \theta \\
\text { subject to } & c^{\prime} x+\frac{1}{2} x^{\prime} Q x \leq \theta \\
& d^{\prime} x+\frac{1}{2} x^{\prime} \Sigma x \leq a
\end{aligned}
$$

Since Q is symmetric psd, we can write $Q=Q^{1 / 2} Q^{1 / 2}$ for some symmetric matrix $Q^{1 / 2}$. Similarly, $\Sigma=\Sigma^{1 / 2} \Sigma^{1 / 2}$ for some symmetric matrix $\Sigma^{1 / 2}$. Therefore, by the Schur complement lemma

$$
\left(\theta-c^{\prime} x\right)-\frac{1}{2}\left(Q^{1 / 2} x\right)^{\prime}\left(Q^{1 / 2} x\right) \geq 0 \quad \Leftrightarrow \quad\left(\begin{array}{cc}
I & \frac{1}{\sqrt{2}}\left(Q^{1 / 2} x\right) \\
\frac{1}{\sqrt{2}}\left(Q^{1 / 2} x\right)^{\prime} & \theta-c^{\prime} x
\end{array}\right) \succcurlyeq 0 .
$$

Similarly,

$$
\left(a-d^{\prime} x\right)-\frac{1}{2}\left(\Sigma^{1 / 2} x\right)^{\prime}\left(\Sigma^{1 / 2} x\right) \geq 0 \quad \Leftrightarrow \quad\left(\begin{array}{cc}
I & \frac{1}{\sqrt{2}}\left(\Sigma^{1 / 2} x\right) \\
\frac{1}{\sqrt{2}}\left(\Sigma^{1 / 2} x\right)^{\prime} & a-d^{\prime} x
\end{array}\right) \succcurlyeq 0 .
$$

So we can recast the given optimization problem as the following semidefinite programming problem:

$$
\begin{array}{rlc}
\operatorname{minimize} & \theta & \\
\text { subject to } & \left(\begin{array}{cc}
I & \frac{1}{\sqrt{2}}\left(Q^{1 / 2} x\right) \\
\frac{1}{\sqrt{2}}\left(Q^{1 / 2} x\right)^{\prime} & \theta-c^{\prime} x \\
I & \frac{1}{\sqrt{2}}\left(\Sigma^{1 / 2} x\right) \\
\frac{1}{\sqrt{2}}\left(\Sigma^{1 / 2} x\right)^{\prime} & a-d^{\prime} x
\end{array}\right) \succcurlyeq 0
\end{array}
$$

Note that in the above formulation that the decision variables are θ and x, and they appear linearly in the matrix constraints.
4.
(a) A possible LP formulation is:

$$
\begin{array}{lll}
z^{*}=\begin{aligned}
\operatorname{maximize} & \theta \\
\text { subject to } & x_{i}^{\prime} f \leq 1
\end{aligned} \forall i: a_{i}=0 \\
& x_{i}^{\prime} f \geq 1+\theta & \forall i: a_{i}=1
\end{array}
$$

where $f \in \mathbb{R}^{n}$ and θ are decision variables. If $z^{*} \leq 0$, then a separating hyperplane does not exist; if $z^{*}>0$, then the optimal solution f^{*} defines a separating hyperplane.
(b) A possible integer linear programming formulation is:

$$
\begin{array}{rcll}
\operatorname{minimize} & \sum_{i=1}^{m} w_{i} & +\sum_{i=1}^{m} z_{i} & \\
\text { subject to } & x_{i}^{\prime} f & \leq 1+M u_{i} & \\
& x_{i}^{\prime} f & \geq(1+\epsilon)-M\left(1-u_{i}\right) & \\
& w_{i} & \geq\left(y_{i}-\beta_{1}^{\prime} x_{i}\right)-M u_{i} & \\
& w_{i} & \geq-\left(y_{i}-\beta_{1}^{\prime} x_{i}\right)-M u_{i} & \\
w_{i} & \leq M(1-\ldots, m \\
& z_{i} & \geq\left(y_{i}-\beta_{2}^{\prime} x_{i}\right)-M\left(1-u_{i}\right) & \\
& i=1, \ldots, m \\
& z_{i} & \geq-\left(y_{i}-\beta_{2}^{\prime} x_{i}\right)-M\left(1-u_{i}\right) & \\
& i=1, \ldots, m \\
& z_{i} & \leq M u_{i} & \\
& u_{i} & \in\{0,1\} &
\end{array}
$$

where $w, z \in \mathbb{R}, \beta_{1}, \beta_{2}, f \in \mathbb{R}^{n}, u \in \mathbb{Z}^{n}$ are decision variables, M is some "very large" constant, and ϵ is some "very small" constant. Note that $u_{i}=0$ implies $x_{i}^{\prime} f \leq 1, w_{i} \geq\left|y_{i}-\beta_{1}^{\prime} x_{i}\right|$, and $z_{i}=0$. Also note that $u_{i}=1$ implies $x_{i}^{\prime} f \geq(1+\epsilon)>1, w_{i}=0$, and $z_{i} \geq\left|y_{i}-\beta_{2}^{\prime} x_{i}\right|$.
5.
(a) We can compute the value of Z_{1} by subgradient methods, as indicated in BT pp. 502-507. Let $n=2, a_{1}^{\prime}=(2,3), a_{2}^{\prime}=(3,2), b_{1}=2, b_{2}=3$. In this instance, neither of the equalities in BT Corollary 11.1 hold, so we can only say $Z_{L P} \leq Z_{1} \leq Z_{I P}$.
(b) We consider one variable at a time, in the order $x_{1}, x_{2}, \ldots, x_{n}$. Accordingly, we define our time periods to be $k=1, \ldots, n$. Define the states to be the ordered pairs (d, f), where d represents the running total of the LHS of the first constraint, and f represents the running total of the LHS of the second constraint. The actions available at time period k correspond to setting the value of x_{k} to 0 or 1 . The cost-to-go function is defined as follows:

$$
\begin{aligned}
& J_{k}(d, f)=\begin{aligned}
\text { minimize } & \sum_{i=k}^{n} c_{i} x_{i} \\
\text { subject to } & d+\sum_{i=k}^{n} a_{1 i} x_{i} \geq b_{1}
\end{aligned} \\
& f+\sum_{i=k}^{n} a_{2 i} x_{i} \geq b_{2} \\
& x_{i} \in\{0,1\}, i=k, \ldots, n
\end{aligned}
$$

We can solve for the value we desire, $J_{1}(0,0)$, using the following recursion

$$
J_{k}\left(d_{k}, f_{k}\right)=\min \{\underbrace{c_{k}+J_{k+1}\left(d_{k}+a_{1 k}, f_{k}+a_{2 k}\right)}_{x_{k}=1}, \underbrace{J_{k+1}\left(d_{k}, f_{k}\right)}_{x_{k}=0}\}
$$

with the following boundary conditions:

$$
\begin{gathered}
J_{n}(d, f)=\begin{aligned}
& \text { minimize } c_{n} x_{n} \\
& \text { subject to } \begin{array}{l}
d+a_{1 n} x_{n} \geq b_{1} \\
\\
f+a_{2 n} x_{n} \geq b_{2}
\end{array} \\
& x_{n} \in\{0,1\}
\end{aligned} \\
\Rightarrow J_{n}(d, f)= \begin{cases}0 & \text { if } d \geq b_{1} \text { and } f \geq b_{2} \\
c_{n} & \text { if } d<b_{1} \leq d+a_{1 n} \text { or } f<b_{2} \leq f+a_{2 n} \\
\infty & \text { otherwise. }\end{cases}
\end{gathered}
$$

Note that $0 \leq d \leq \sum_{i=1}^{n} a_{1 i}$ and $0 \leq f \leq \sum_{i=1}^{n} a_{2 i}$. If a_{1} and a_{2} are integral, then the state space is finite, of cardinality $\left(\sum_{i=1}^{n} a_{1 i}+1\right)\left(\sum_{i=1}^{n} a_{2 i}+1\right)$. If a_{1} and a_{2} are not integral, then the state space becomes uncountable.

MIT OpenCourseWare
http://ocw.mit.edu

15.093J / 6.255J Optimization Methods

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

