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2.098/6.255/15.093J Optimization Methods, Fall 2005 
(Brief) Solutions to Final Exam, Fall 2003 

1. 

1. False. The problem of minimizing a convex, piecewise linear function over a polyhedron can 
be formulated as a LP. 

2.	 True. The dual of the problem is max{0 :  p ≤ 1}. p = 1 is nondegenerate, for example. 

3. False. Consider min{−x1 − x2 : x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}. 
4. False. Take the primal-dual pair in part 2 of this question, for example. 

5. False. Barrier interior-point methods are unaffected by degeneracy; see BT p. 439. 

6.	 True. KKT conditions hold for a local minimum under the linearly independent constraint 
qualification condition (LICQ). 

7. False.	 Barrier interior-point methods find an interior point of the face of optimal solutions. 
See BT p. 537 and p. 544 for a discussion on the numerical behavior of the simplex and 
interior point methods. 

8. True. BT Theorem 7.5. 

9. True. Lecture 18, Slides 40-50. 

10.	 True. Recall the zig-zag phenomenon shown in lecture. 

2. 
(a)	 Proof by contradiction. Assume that f is strictly convex. Suppose all optimal solutions are 

not extreme points of P . Consider an arbitrary optimal solution, x ∗ = (x1
∗ , . . . , x  n

∗ ). Since x ∗ 

is not an extreme point, x ∗ = λy + (1  − λ)z for some y = (y1, . . . , yn), z  = (z1, . . . , zn) ∈ P 
and λ ∈ [0, 1]. Therefore, 

n ∑ n ∑ n ∑ ∗ f(yi) +  (1  − λ) f(zi) < f(x ),λ i 
j=1 j=1 j=1 

so either y or z must produce a lower value than x ∗ . This is a contradiction.

If f is not strictly convex, you can repeat the above argument in conjunction with an argu

ment like in the proof of BT Theorem 2.6 ((b) ⇒ (a)) to show that p

k=1 λi i
n 
=1 f(xi

k) ≤ 
n f(x ∗) where  xk is an extreme point for some k = 1, . . . , p.i=1 i 

(b)	 The problem we are concerned with is 

minimize j
n 
=1 f(xj) 

subject to Ax = b 
xj ∈ {0, 1} 

Let c = f(1) and d = f(0). Since xj ∈ {0, 1}, f(xj) =  d + (c − d)xj . Therefore, the objective 
function can be written as 

n n	 n 

f(xj) =  (d + (c − d)xj ) =  nd + (c − d) xj , 
j=1 j=1 j=1 
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which is linear in x. 

3. Without loss of generality, assume Q and Σ are symmetric, since they only appear in quadratic 
forms. 
(a)	 KKT conditions: there exists a multiplier u ≥ 0 such that (c + Qx) +  u(d + Σx) = 0, and 

u(d′x + 12 x
′Σx − a) =  0.  

(b)	 Use Newton’s method to solve the system of equations prescribed by the KKT conditions. 

(c)	 An equivalent optimization problem is 

minimize θ 
subject to c′x + 2

1 x′Qx ≤ θ 
d′x + 1 x′Σx ≤ a2 

Since Q is symmetric psd, we can write Q = Q1/2Q1/2 for some symmetric matrix Q1/2 . 
Similarly, Σ = Σ1/2Σ1/2 for some symmetric matrix Σ1/2. Therefore, by the Schur complement 
lemma 

(θ − c ′ x) − 
1
(Q1/2 x)′(Q1/2 x) ≥ 0 ⇔ √1 (Q

I 
1/2x)′

√1
2 
(Q1/

′
2x) 

� 0. 
θ − c x2

2 

Similarly, 

1 I √1 (Σ1/2x)
(a − d′ x) − 

2
(Σ1/2 x)′(Σ1/2 x) ≥ 0 ⇔ √1 (Σ1/2x)′ a 

2 
− d′x 

� 0. 
2 

So we can recast the given optimization problem as the following semidefinite programming 
problem: 

minimize θ 
I √1 (Q1/2x)

subject to √1 (Q1/2x)′ 
2 
θ − c′x 

� 0 
2 

I √1 (Σ1/2x)
2 � 0 √1 (Σ1/2x)′ a − d′x 

2 

Note that in the above formulation that the decision variables are θ and x, and they appear 
linearly in the matrix constraints. 

4. 

(a)	 A possible LP formulation is: 

z ∗ = maximize θ 
subject to xi

′ f ≤ 1 ∀i : ai = 0  
x′ 

if ≥ 1 +  θ ∀i : ai = 1  

where f ∈ Rn and θ are decision variables. If z ∗ ≤ 0, then a separating hyperplane does not 
exist; if z ∗ > 0, then the optimal solution f∗ defines a separating hyperplane. 
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(b) A possible integer linear programming formulation is: 
m mminimize i=1 wi + i=1 zi 

x
subject to
 f ≤ 1 +  Mui	 i = 1, . . . ,m  i

f ≥ (1 + ε) − M(1 − ui) i = 1, . . . ,m  x
i
1xi) − Mui 

≥ −(yi − β1xi) − Mui 

(yi − β i = 1, . . . ,m 

i = 1, . . . ,m 


wi ≥ 
wi 

wi ≤ M(1 − ui)	 i = 1, . . . ,m  

2xi) − M(1 − ui) 
≥ −(yi − β2xi) − M(1 − ui) 

(yi − β i = 1, . . . ,m 

i = 1, . . . ,m 


zi ≥ 
zi 

zi ≤ Mui i = 1, . . . ,m  
ui ∈ {0, 1} i = 1, . . . ,m  

where w, z ∈ R, β1, β2, f  ∈ R
n , u ∈ Z

n are decision variables, M is some “very large” constant, 
1xi|, and  and ε is some “very small” constant. Note that ui = 0 implies x f ≤ 1, wi ≥ |yi − β

f ≥ (1 + ε) > 1, wi = 0,  and  zi ≥ |yi − β2xi|
i

zi = 0.  Also  note  that  ui = 1 implies x .
i

5. 
(a)	 We can compute the value of Z1 by subgradient methods, as indicated in BT pp. 502-507. Let 

n = 2,  a
1 = (2, 3), a
2 = (3, 2), b1 = 2,  b2 = 3. In this instance, neither of the equalities in BT 
Corollary 11.1 hold, so we can only say ZLP ≤ Z1 ≤ ZIP  . 

(b)	 We consider one variable at a time, in the order x1, x2, . . . , xn. Accordingly, we define our 
time periods to be k = 1, . . . , n. Define the states to be the ordered pairs (d, f), where d 
represents the running total of the LHS of the first constraint, and f represents the running 
total of the LHS of the second constraint. The actions available at time period k correspond 
to setting the value of xk to 0 or 1. The cost-to-go function is defined as follows: 

Jk(d, f) = minimize i
n 
=k cixi 

subject to d + i
n 
=k a1ixi ≥ b1 

f + i
n 
=k a2ixi ≥ b2 

xi ∈ {0, 1}, i  = k, . . . , n  

We can solve for the value we desire, J1(0, 0), using the following recursion 

Jk(dk, fk) =  min{ck + Jk+1(dk + a1k, fk + a2k), Jk+1(dk, fk)}︸ ︷︷ ︸ ︸ ︷︷ ︸ 
xk=1	 xk=0 

with the following boundary conditions: 

Jn(d, f) = minimize cnxn 

subject to d + a1nxn ≥ b1 

f + a2nxn ≥ b2 

xn ∈ {0, 1}  0  if  d ≥ b1 and f ≥ b2 
⇒ Jn(d, f) =  cn if d < b1 ≤ d + a1n or f < b2 ≤ f + a2n  ∞	 otherwise. 

Note that 0 ≤ d ≤ n and 0 ≤ f ≤ i
n 
=1 a2i. If  a1 and a2 are integral, then the state i=1 a1i ∑ ∑ 

space is finite, of cardinality ( i
n 
=1 a1i + 1)(  i

n 
=1 a2i + 1).  If  a1 and a2 are not integral, then 

the state space becomes uncountable. 
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