15.093 - Recitation 5
 Michael Frankovich and Shubham Gupta

October 9, 2009

1 BT Exercise 5.5

Solution

The tableau is:

	0	0	\bar{c}_{3}	0	\bar{c}_{5}
1	0	1	-1	0	β
2	0	0	2	1	γ
3	1	0	4	0	δ

a) The necessary and sufficient conditions for optimality are $\bar{c}_{3} \geq 0$ and $\bar{c}_{5} \geq 0$.
b) Continuing the simplex method, with x_{3} the entering variable, x_{1} will leave the basis. In the new tableau, the optimal bfs is obtained;

	0	0	0	0	\bar{c}_{5}
$7 / 4$	$1 / 4$	1	0	0	$\beta+\delta / 4$
$1 / 2$	$-1 / 2$	0	0	1	$\gamma-\delta / 2$
$3 / 4$	$1 / 4$	0	1	0	$\delta / 4$

c) If $\bar{c}_{3} \geq 0$ and $\bar{c}_{5} \geq 0$, then the current solution is optimal. Now consider the case when $\bar{c}_{3}<0$ or $\bar{c}_{5}<0$. Note any feasible solution must satisfy $A x=b, x \geq 0$ and so $B^{-1} A x=B^{-1} b$ for any basis B. Hence we read the followign three equations from the tableau:

$$
\begin{array}{r}
x_{2}-x_{3}+\beta x_{5}=1 \\
2 x_{3}+x_{4}+\gamma x_{5}=2 \\
x_{1}+4 x_{3}+\delta x_{5}=3 \tag{3}
\end{array}
$$

Eqn (2) tells us x_{3}, x_{4} and x_{5} are bounded, then eqns (1) and (3) tell us x_{2} and x_{1}, respectively, are bounded. So the polyehdron is bounded and so has an optimal cost, since it is nonempty.
d) The current basis is optimal. B^{-1} is the last three columns of the tableau. Why? We need to ensure primal feasibility is maintained. We require $B^{-1}\left(b+\epsilon e_{1}\right)=$ $B^{-1} b+\epsilon B^{-1} e_{1}=(1,2,3)^{\prime}+\epsilon(-1,2,4)^{\prime} \geq 0$, which occurs iff $-3 / 4 \leq \epsilon \leq 1$.
e) Note that x_{1} is the third basic variable. So we have then that the new $\hat{c}_{B}=c_{B}+\epsilon e_{3}$. Feasibility is not affected. The optimality condition is $\hat{c}-\hat{c}_{B}^{\prime} B^{-1} A=c^{\prime}+\epsilon e_{1}^{\prime}-$ $c_{B}^{\prime} B^{-1} A-\epsilon e_{3}^{\prime} B^{-1} A=\bar{c}^{\prime}+\epsilon e_{1}^{\prime}-\epsilon(1,0,4,0, \delta)=\bar{c}^{\prime}-\epsilon(0,0,4,0, \delta) \geq 0$. So we require

$$
\begin{aligned}
& \epsilon \leq \bar{c}_{3} / 4, \\
& \epsilon \leq \bar{c}_{5} / \delta, \quad \delta>0, \\
& \epsilon \geq \bar{c}_{5} / \delta, \quad \delta<0 .
\end{aligned}
$$

2 Dantzig-Wolfe Decomposition

See Bertsimas and Tsitsklis, chapter 6.

MIT OpenCourseWare
http://ocw.mit.edu
15.093J / 6.255J Optimization Methods

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

