Working with the Basis Inverse over a Sequence of Iterations

Robert M. Freund

February, 2004

©2004 Massachusetts Institute of Technology. All rights reserved.

1 Equations Involving the Basis Matrix

At each iteration of the simplex method, we have a basis consisting of an index of variables:

$$B(1),\ldots,B(m)$$
,

from which we form the basis matrix B by collecting the columns $A_{B(1)}, \ldots, A_{B(m)}$ of A into a matrix:

$$B := \left[A_{B(1)} \mid A_{B(2)} \mid \ldots \mid A_{B(m-1)} \mid A_{B(m)} \right] .$$

In order to execute the simplex method at each iteration, we need to be able to compute:

$$x = B^{-1}r_1$$
 and/or $p^T = r_2^T B^{-1}$, (1)

for iteration-specific vectors r_1 and r_2 , which is to say that we need to solve equation systems of the type:

$$Bx = r_1$$
 and/or $p^T B = r_2^T$ (2)

for x and p.

2 LU Factorization

One way to solve (2) is to factor B into the product of a lower and upper triangular matrix L, U:

$$B = LU$$
,

and then compute x and/or p as follows. To compute x, we solve the following two systems by back substitution:

- First solve $Lv = r_1$ for v
- Then solve Ux = v for x.

To compute p, we solve the following two systems by back substitution:

- First solve $u^T U = r_2^T$ for u
- Then solve $p^T L = u^T$ for p.

It is straightforward to verify that these procedures yield x and p that satisfy (2). If we compute according to these procedures, then:

$$Bx = LUx = Lv = r_1$$
 and $p^T B = p^T LU = u^T U = r_2^T$.

3 Updating the Basis and its Inverse

As the simplex method moves from one iteration to the next, the basis matrix B changes by one column. Without loss of generality, assume that the columns of A have been re-ordered so that

$$B := [A_1 | \dots | A_{j-1} | A_j | A_{j+1} | \dots | A_m]$$

at one iteration. At the next iteration we have a new basis matrix \tilde{B} of the form:

$$\tilde{B} := [A_1 \mid \ldots \mid A_{j-1} \mid A_k \mid A_{j+1} \mid \ldots \mid A_m] .$$

Here we see that column A_j has been replaced by column A_k in the new basis.

Assume that at the previous iteration we have B and we have computed an LU factorization of B that allows us to solve equations involving B^{-1} . At the current iteration, we now have \tilde{B} and we would like to solve equations involving \tilde{B}^{-1} . Although one might think that we might have to compute an LU factorization of \tilde{B} , that is not the case. Herein we describe how the linear algebra of working with \tilde{B}^{-1} is computed in practice. Before we describe the method, we first need to digress a bit to discuss rank-1 matrices and rank-1 updates of the inverse of a matrix.

3.1 Rank-1 Matrices

Consider the following matrix:

$$W = \begin{pmatrix} -2 & 2 & 0 & -3\\ -4 & 4 & 0 & -6\\ -14 & 14 & 0 & -21\\ 10 & -10 & 0 & 15 \end{pmatrix}$$

W is an example of rank-1 matrix. All rows are linearly dependent and all columns are linearly dependent. Now define:

$$u = \begin{pmatrix} 1 \\ 2 \\ 7 \\ -5 \end{pmatrix}$$
 and $v^T = (-2 \ 2 \ 0 \ -3)$.

If we think of u and v as $n\times 1$ matrices, then notice that it makes sense to write:

$$W = uv^{T} = \begin{pmatrix} 1 \\ 2 \\ 7 \\ -5 \end{pmatrix} \times \begin{pmatrix} -2 & 2 & 0 & -3 \end{pmatrix} = \begin{pmatrix} -2 & 2 & 0 & -3 \\ -4 & 4 & 0 & -6 \\ -14 & 14 & 0 & -21 \\ 10 & -10 & 0 & 15 \end{pmatrix} .$$

In fact, we can write any rank-1 matrix as uv^T for suitable vectors u and v.

3.2 Rank-1 Update of a Matrix Inverse

Suppose we have a matrix M and we have computed its inverse M^{-1} . Now consider the matrix

$$\tilde{M} := M + uv^T$$

for some rank-1 matrix $W = uv^T$. Then there is an exact formula for \tilde{M}^{-1} based on the data M^{-1}, u , and v, which is called the Sherman-Morrison formula:

Property. \tilde{M} is invertible if and only if $v^T M^{-1} u \neq -1$, in which case

$$\tilde{M}^{-1} = \left[I - \frac{M^{-1}uv^T}{1 + v^T M^{-1}u}\right] M^{-1} .$$
(3)

Proof: Let

$$Q = \left[I - \frac{M^{-1}uv^{T}}{1 + v^{T}M^{-1}u}\right]M^{-1}$$

Then it suffices to show that $\tilde{M}Q = I$, which we now compute:

$$\begin{split} \tilde{M}Q &= \left[M + uv^{T}\right] \times \left[I - \frac{M^{-1}uv^{T}}{1 + v^{T}M^{-1}u}\right] M^{-1} \\ &= \left[M + uv^{T}\right] \times \left[M^{-1} - \frac{M^{-1}uv^{T}M^{-1}}{1 + v^{T}M^{-1}u}\right] \\ &= I + uv^{T}M^{-1} - \frac{uv^{T}M^{-1}}{1 + v^{T}M^{-1}u} - \frac{uv^{T}M^{-1}uv^{T}M^{-1}}{1 + v^{T}M^{-1}u} \\ &= I + uv^{T}M^{-1}\left(1 - \frac{1}{1 + v^{T}M^{-1}u} - \frac{v^{T}M^{-1}u}{1 + v^{T}M^{-1}u}\right) \\ &= I \end{split}$$

 $\mathbf{q}.\mathbf{e}.\mathbf{d}.$

3.3 Solving Equations with \tilde{M} using M^{-1}

Suppose that we have a convenient way to solve equations of the form Mx = b (for example, if we have computed an LU factorization of M), but that we want to solve the equation system:

$$Mx = b$$
.

Using (3), we can write:

$$x = \tilde{M}^{-1}b = \left[I - \frac{M^{-1}uv^T}{1 + v^T M^{-1}u}\right]M^{-1}b .$$

Now notice in this expression that we only need to work with M^{-1} , which we presume that we can do conveniently. In fact, if we let

$$x^1 = M^{-1}b$$
 and $x^2 = M^{-1}u$,

we can write the above as:

$$x = \tilde{M}^{-1}b = \left[I - \frac{M^{-1}uv^T}{1 + v^T M^{-1}u}\right]M^{-1}b = \left[I - \frac{x^2v^T}{1 + v^T x^2}\right]x^1 = x^1 - \frac{v^T x^1}{1 + v^T x^2}x^2$$

Therefore we have the following procedure for solving $\tilde{M}x = b$:

- Solve the system $Mx^1 = b$ for x^1
- Solve the system $Mx^2 = u$ for x^2
- Compute $x = x^1 \frac{v^T x^1}{1 + v^T x^2} x^2$.

3.4 Computational Efficiency

The number of operations needed to form an LU factorization of an $n \times n$ matrix M is on the order of n^3 . Once the factorization has been computed, the number of operations it takes to then solve Mx = b using back substitution by solving Lv = b and Ux = v is on the order of n^2 . If we solve $\tilde{M}x = b$ by factorizing \tilde{M} and then doing back substitution, the number of operations needed would therefore be $n^3 + n^2$. However, if we use the above rank-1 update method, the number of operations is n^2 operations for each solve step and then 3n operations for the final step, yielding a total operation count of $2n^2 + 3n$. This is vastly superior to $n^3 + n^2$ for large n.

3.5 Application to the Simplex Method

Returning to the simplex method, recall that we presume that the current basis is:

$$B := [A_1 | \dots | A_{j-1} | A_j | A_{j+1} | \dots | A_m]$$

at one iteration, and at the next iteration we have a new basis matrix \tilde{B} of the form:

$$\ddot{B} := [A_1 \mid \ldots \mid A_{j-1} \mid A_k \mid A_{j+1} \mid \ldots \mid A_m]$$

Now notice that we can write:

$$\tilde{B} = B + (A_k - A_j) \times \left(e^j\right)^T$$

where e^j is the j^{th} unit vector (e^j has a 1 in the j^{th} component and a 0 in every other component). This means that \tilde{B} is a rank-1 update of B with

$$u = (A_k - A_j)$$
 and $v = \left(e^j\right)$. (4)

If we wish to solve the equation system $\tilde{B}x = r_1$, we can apply the method of the previous section, substituting M = B, $b = r_1$, $u = (A_k - A_j)$ and $v = (e^j)$. This works out to:

- Solve the system $Bx^1 = r_1$ for x^1
- Solve the system $Bx^2 = A_k A_j$ for x^2
- Compute $x = x^1 \frac{(e^j)^T x^1}{1 + (e^j)^T x^2} x^2$.

This is fine if we want to update the basis only once. In practice, however, we would like to systematically apply this method over a sequence of iterations of the simplex method. Before we indicate how this can be done, we need to do a bit more algebraic manipulation. Notice that using (3) and (4) we can write:

$$\tilde{B}^{-1} = \left[I - \frac{B^{-1}uv^T}{1 + v^T B^{-1}u}\right] B^{-1}$$
$$= \left[I - \frac{B^{-1}(A_k - A_j)(e^j)^T}{1 + (e^j)^T B^{-1}(A_k - A_j)}\right] B^{-1}$$

Now notice that because $A_j = Be^j$, it follows that $B^{-1}A_j = e^j$, and substituting this in the above yields:

$$\tilde{B}^{-1} = \left[I - \frac{(B^{-1}A_k - e^j)(e^j)^T}{(e^j)^T B^{-1}A_k}\right] B^{-1}$$
$$= \tilde{E}B^{-1}$$

where

$$\tilde{E} = \left[I - \frac{(B^{-1}A_k - e^j) (e^j)^T}{(e^j)^T B^{-1}A_k} \right] .$$

Furthermore, if we let \tilde{w} be the solution of the system $B\tilde{w} = A_k$, that is, $\tilde{w} = B^{-1}A_k$, then we can write \tilde{E} as

$$\tilde{E} = \left[I - \frac{\left(\tilde{w} - e^{j}\right)\left(e^{j}\right)^{T}}{\left(e^{j}\right)^{T}\tilde{w}}\right]$$

We state this formally as:

Property A. Suppose that the basis \tilde{B} is obtained by replacing the j^{th} column of B with the new column A_k . Let \tilde{w} be the solution of the system $B\tilde{w} = A_k$ and define:

$$\tilde{E} = \left[I - \frac{\left(\tilde{w} - e^{j}\right) \left(e^{j}\right)^{T}}{\left(e^{j}\right)^{T} \tilde{w}} \right] .$$
$$\tilde{B}^{-1} = \tilde{E}B^{-1} .$$
(5)

Then

Once we have computed \tilde{w} we can easily form \tilde{E} . And then we have from above:

$$x = \tilde{B}^{-1}r_1 = \tilde{E}B^{-1}r_1$$
.

Using this we can construct a slightly different (but equivalent) method for solving $\tilde{B}x = r_1$:

- Solve the system $B\tilde{w} = A_k$ for \tilde{w}
- Form and save the matrix $\tilde{E} = \left[I \frac{(\tilde{w} e^j)(e^j)^T}{(e^j)^T \tilde{w}}\right]$
- Solve the system $Bx^1 = r_1$ for x^1
- Compute $x = \tilde{E}x^1$.

Notice that

$$\tilde{E} = \begin{pmatrix} 1 & \tilde{c}_{1} & & \\ & 1 & \tilde{c}_{2} & & \\ & \ddots & \vdots & & \\ & & \tilde{c}_{j} & & \\ & & \vdots & \ddots & \\ & & & \tilde{c}_{m} & & 1 \end{pmatrix}$$

where

$$\tilde{c} = \frac{(\tilde{w} - e^j)}{(e^j)^T \, \tilde{w}} \; .$$

 \tilde{E} is an *elementary* matrix, which is matrix that differs from the identity matrix in only one column or row. To construct \tilde{E} we only need to solve

 $B\tilde{w} = A_k$, and that the information needed to create \tilde{E} is the *n*-vector \tilde{w} and the index j. Therefore the amount of memory needed to store \tilde{E} is just n+1 numbers. Also the computation of $\tilde{E}x^1$ involves only 2n operations if the code is written to take advantage of the very simple special structure of \tilde{E} .

4 Implementation over a Sequence of Iterations

Now let us look at the third iteration. Let $\tilde{\tilde{B}}$ be the basis at this iteration. We have:

$$\tilde{B} := [A_1 | \dots | A_{i-1} | A_i | A_{i+1} | \dots | A_m]$$

at the second iteration, and let us suppose that at the third iteration we replace the column A_i with the column A_l , and so $\tilde{\tilde{B}}$ is of the form:

$$\tilde{B} := [A_1 \mid \ldots \mid A_{i-1} \mid A_l \mid A_{i+1} \mid \ldots \mid A_m]$$

Then using **Property A** above, let $\tilde{\tilde{w}}$ be the solution of the system $\tilde{B}\tilde{\tilde{w}} = A_i$. Then

$$\tilde{\tilde{B}}^{-1} = \tilde{\tilde{E}}\tilde{B}^{-1} \tag{6}$$

where

$$\tilde{\tilde{E}} = \left[I - \frac{\left(\tilde{\tilde{w}} - e^i\right)\left(e^i\right)^T}{\left(e^i\right)^T \tilde{\tilde{w}}}\right]$$

It then follows that $\tilde{\tilde{B}}^{-1} = \tilde{\tilde{E}}\tilde{B}^{-1} = \tilde{\tilde{E}}\tilde{E}B^{-1}$, and so:

$$\tilde{\tilde{B}}^{-1} = \tilde{\tilde{E}}\tilde{E}B^{-1} .$$
(7)

Therefore we can easily solve equations involving $\tilde{\tilde{B}}$ by forming \tilde{E} and $\tilde{\tilde{E}}$ and working with the original LU factorization of B.

This idea can be extended over a large sequence of pivots. We start with a basis B and we compute and store an LU factorization of B. Let our sequence of bases be $B_0 = B, B_1, \ldots, B_k$ and suppose that we have computed matrices E_1, \ldots, E_k with the property that

$$(B_l)^{-1} = E_l E_{l-1} \cdots E_1 B^{-1}$$
, $l = 1, \dots, k$.

Then to work with the next basis inverse B_{k+1} we compute a new matrix E_{k+1} and we write:

$$(B_{k+1})^{-1} = E_{k+1}E_k\cdots E_1B^{-1}$$
.

This method of working with the basis inverse over a sequence of iterations eventually degrades due to accumulated roundoff error. In most simplex codes this method is used for K = 50 iterations in a row, and then the next basis is completely re-factorized from scratch. Then the process continues for another K iterations, etc.

5 Homework Exercise

- 1. In Section 3.2 we considered how to compute a solution x of the equation $\tilde{M}x = b$ where $\tilde{M} = M + uv^T$ and we have on hand an LU factorization of M. Now suppose instead that we wish to compute a solution p of the equation $p^T \tilde{M} = c^T$ for some RHS vector c. Using the ideas in Section 3.2, develop an efficient procedure for computing p by working only with an LU factorization of M.
- 2. In Section 3.5 we considered how to compute a solution x of the equation $\tilde{B}x = r_1$ where \tilde{B} differs from B by one column, and we have on hand an LU factorization of B. Now suppose instead that we wish to compute a solution p of the equation $p^T\tilde{B} = r_2^T$ for some vector r_2 . Using the ideas in Section 3.5, develop an efficient procedure for computing p by working only with an LU factorization of B.