Module on Large-Scale
 Integer Programming \& Combinatorial Optimization

Three Lectures

\square Traveling salesman problem
\square Facility location
\square Network design

> Games/Challenges Applications, Models, and Solution Methods

Traveling Salesman Problem

Agenda

\square Origins
\square Electronic Component Placement
\square TSP Model

- Turbine Vane Placement
\square Other Applications of TSP
\square Solution Methods
Heuristic Methods
Lagrangian relaxation (bounding methods)
\square Some large scale instances
(computations)

William Rowan Hamilton

Icosian game

Hamiltonian Path and the TSP

Interest in Traveling Salesman Problem (IISP)

\square Arises in Many Applications
\square Alluring (Captures Imagination)
\square Notoriously Difficult to Solve
\square Has Attracted Best Minds in Math/CS/OR for 40 Years

The Traveling

Salesman Problem and Electronics Assembly

Placement Problem

Placement Locations

需

VIV

\square
पठ

Placement Sequence

Traveling Salesman Interpretation

Model Ingredients

$\mathrm{c}_{\mathrm{jk}} \quad$ cost of placing module k after placing module j

$\mathrm{x}_{\mathrm{jk}}=1$ if placement k follows placement j
 0 otherwise

Assignment Problem

Minimize $\Sigma_{\mathrm{j}} \Sigma_{\mathrm{k}} \mathrm{c}_{\mathrm{jk}} \mathrm{x}_{\mathrm{jk}}$
subject to

$$
\begin{aligned}
& \Sigma_{\mathrm{k}} \mathrm{x}_{\mathrm{jk}}=1 \text { for each } \mathrm{j} \\
& \Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{jk}}=1 \text { for each } k \\
& \mathrm{x}_{\mathrm{jk}} \geq 0 \text { for all } \mathrm{j} \& \mathrm{k}
\end{aligned}
$$

Proper TSP Model?

Subtour Solution

0 0 0	\square \square \square		W	\square \square \square	首	(1) \square ULD

TSP Model

Assignment Model

$$
+
$$

Subtour Breaking Constraints

$$
\Sigma_{\mathrm{j} \in \mathrm{~S}} \Sigma_{\mathrm{k} \in \mathrm{~S}} \mathrm{X}_{\mathrm{jk}} \leq|S|-1 \text { for all subsets }
$$ S of nodes $\{2,3, \ldots, \mathrm{n}\}$

Proper TSP Model?

Implications for IC Insertions

\square Manual Designs \Rightarrow Long Time
10 hours for 70 to 100 components
\square Better Solutions
10-25\% improvements by optimization

Other Applications Similar

Feeder Placement

\square Modeling?
\square Solution Methods?
Heuristic
Optimization

Other Applications of TSP?

Other Applications of TSP

Machine Scheduling

Machine "Visits" Jobs
Travel Time = Set up Time

Other Applications

\square Analyzing the structure of crystals
\square Material handling in a warehouse

- Clustering of data arrays
\square Cutting stock problems
- Genome sequencing
\square Starlight interferometer satellite positioning
\square DNA universal strings
\square Collecting coins from payphones

Solving the TSP

26 City Traveling Salesman Problem

Finding a Good Solution

■How?
[How good is good?
LP bounds
Combinatorial bounds

Solution Methods

\square Heuristics

Growing solutions: nearest neighbor, farthest neighbor, nearest insertion
Improvement procedures: 2-opt, 3-opt
\square Optimization Methods
Bounding: LP relaxation, Lagrangian dual
Polyhedral methods (cutting planes)

Heuristics

\square Build Tour

Nearest Neighbor
Nearest/Farthest Insertion
\square Improve Tour
Swapping Edges

Insertion Heuristics

Farthest Insertion

Tour Improvements

2-opt

Eliminate 2 arcs and reconnect

Choose best alternative at each step

Exploiting Embedded Structure

$\operatorname{minimize} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}$

subject to $\sum_{j=1}^{n} x_{i j}-1$ for all $i=1,2, \ldots, n$

$$
\sum_{i=2}^{n} \sum_{j=2}^{n} x_{i j}=n-2
$$

$$
\sum_{i \in S} \sum_{j \in S} x_{i j} \leq|S|-1 \text { for all } S \subseteq\{2,3, \ldots, n\}
$$

Redundant Constraint

$$
x_{i j} \geq 0 \text { and integer }
$$

Minimum spanning tree on nodes 2 to n

Underlying Structure

Decomposed Tour

Arc in and out Path (hence tree) on nodes 2 to n of node 1

Lagrangian Relaxation

$$
\begin{gathered}
L(u, v)=\operatorname{minimize} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}+\sum_{i=2}^{n} u_{i}\left[\sum_{j=1}^{n} x_{i j}-1\right] \\
+\sum_{j=2}^{n} v_{j}\left[\sum_{i=1}^{n} x_{i j}-1\right]
\end{gathered}
$$

subject to $\sum_{j=1}^{n} x_{1 j}=1$

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i 1}=1 \\
& \sum_{i=2}^{n} \sum_{j=2}^{n} x_{i j}=n-2 \\
& \sum_{i \in S} \sum_{j \in S} x_{i j} \leq|S|-1 \text { for all } S \subseteq\{2,3, \ldots, n\} \\
& x_{i j} \geq 0 \text { and integer }
\end{aligned}
$$

Improving Lagrangian Lower Bound

Solution X^{*} to Lagrangian Relaxation

Too many arcs out Increase U_{5}
$c_{5 j}+u_{5}+v_{j}$ more expensive

Too few arcs out Decrease u_{6} $\mathrm{c}_{6 \mathrm{j}}+\mathrm{u}_{6}+\mathrm{v}_{\mathrm{j}}$ less expensive

Solution Approach (Dual Ascent)

\square Solve $L(u, v)$ Use costs $\mathrm{c}_{\mathrm{ij}}+\mathrm{v}_{\mathrm{i}}+\mathrm{u}_{\mathrm{j}}$ Select least cost arc out of and into node 1 Find minimal spanning tree on nodes 2 to n (easy)
\square Let x^{*} be optimal solution to $L(u, v)$
\square Using x^{*} alter u and v to increase lower bound $L(u, v)$
\square Iterate to solve Lagrangian dual

$$
d=\max _{u, v} L(u, v)
$$

Dual Ascent in General

$v^{*}=\operatorname{minimize} c x$
subject to $A x=b$
Complicating Constraints

$$
\begin{aligned}
& x \in X \\
& \text { e.g., } X=\{x: D x=d, x \geq 0\}
\end{aligned}
$$

Lagrangian Dual $L(u)=$ minimize $c x+u[A x-b]$
subject to $x \in X$

Dual Ascent in General

$$
\begin{gathered}
\text { If } L\left(u^{k}\right)=c x\left(u^{k}\right)+u^{k}\left[A x\left(u^{k}\right)-b\right] \\
\nabla L\left(u^{k}\right) \approx A x\left(u^{k}\right)-b \\
u^{k+1}=u^{k}-\theta_{k}\left[A x\left(u^{k}\right)-b\right] \\
\theta_{k}=\frac{\lambda_{k}\left[c x\left(u^{k}\right)-v^{*}\right]}{\left\|A x\left(u^{k}\right)-b\right\|^{2}}
\end{gathered}
$$

Dual Ascent Convergence

Theorem

If $0<\varepsilon_{1} \leq \lambda_{k} \leq 2-\varepsilon_{2}$
and $\left\|A x\left(u^{k}\right)-b\right\|$ are bounded,
then $c\left(x^{k}\right)$ converges to v^{*}.
In practice, continue with fixed λ_{k} except half λ_{k} after some number (50?) of iterations if $c\left(x^{\star}\right)$ doesn't decrease

Solving Minimum Spanning Tree

Greedy (Kruskal Algorithm)

\square Order arcs from smallest to highest costs
\square Choose arcs in order
If arc does not form an undirected circuit with arcs already chosen, then choose arc;
Otherwise eliminate arc from consideration

Amazing Facts!

\square Greedy algorithm (and several variants) solves the minimum spanning problem
\square The linear programming relaxation of the formulation we have given for the minimum spanning problem always has an integer solution (the underlying polyhedron has integer extreme points)

Solving Network Flow Problems

\square Giden (Graphical Environment for Network Optimization)

Demonstration of

- Minimum spanning trees
- Maximum flows
- Minimum cost flows
(Based on Ahuja, Magnanti, Orlin's book Network Flows)

2103 hole

 printed circuitboard example

11,849 hole printed circuit board example

11,849 hole printed circuit board solution

13,094,345 seconds total on 55 CPUs

Traveling salesman problem through 15,112 cities in Germany

22.6 years of computation on network of 110 Processors

See http://www.math.princeton.edu/tsp/

Today's Lessons

\square Traveling salesman problem arises in numerous applications
\square Problem is a large-scale integer program
\square Many heuristic methods: often find good solutions
\square Lagrangian dual (bounding) exploits special problem structure (embedded minimal spanning tree)
\square MST is easy to solve
We did NOT examine polyhedral (cutting plane) methods

