Module on Large-Scale Integer Programming & Combinatorial Optimization

Three Lectures

Traveling salesman problem

Facility location

Network design

Games/Challenges Applications, Models, and Solution Methods Traveling Salesman Problem

Thomas L. Magnanți

Agenda

Origins Electronic Component Placement TSP Model Turbine Vane Placement Other Applications of TSP Solution Methods Heuristic Methods Lagrangian relaxation (bounding methods) Some large scale instances (computations)

William Rowan Hamilton

lcosian game

lcosian game

Hamiltonian Path and the TSP

Interest in Traveling Salesman Problem (TSP)

 Arises in Many Applications
 Alluring (Captures Imagination)
 Notoriously Difficult to Solve
 Has Attracted Best Minds in Math/CS/OR for 40 Years The Traveling Salesman **Problem and Electronics** Assembly

Placement Problem

Placement Sequence

Traveling Salesman Interpretation

Model Ingredients

c_{jk} cost of placing module k after placing module j

x_{jk} =1 if placement k follows placement j 0 otherwise

Assignment Problem

Minimize $\Sigma_j \Sigma_k C_{jk} X_{jk}$ subject to $\begin{array}{ll} \Sigma_k x_{jk} & = 1 \mbox{ for each } j \\ \Sigma_j x_{jk} & = 1 \mbox{ for each } k \\ x_{jk} & \geq 0 \mbox{ for all } j \& k \end{array}$ **Proper TSP Model?**

Subtour Solution

TSP Model Assignment Model

Subtour Breaking Constraints $\Sigma_{j\in S} \Sigma_{k\in S} |X_{jk} \le |S| - 1$ for all subsets S of nodes {2,3,...,n} Proper TSP Model?

Implications for IC Insertions

 ❑ Manual Designş ⇒ Long Time
 ◆ 10 hours for 70 to 100 components
 ❑ Better Solutions
 ◆ 10-25% improvements by optimization

Other Applications Similar

Feeder Placement

Modeling?
 Solution Methods?
 Heuristic
 Optimization

Other Other

Other Applications of TSP

Machine Scheduling

Machine "Visits" Jobs Travel Time = Set up Time

Other Applications

- Analyzing the structure of crystals Material handling in a warehouse Clustering of data arrays Cutting stock problems Genome sequencing Starlight interferometer satellite positioning DNA universal strings
- Collecting coins from payphones

Solving the TSP

26 City Traveling Salesman Problem

Finding a Good Solution

How?
How good is good?
LP bounds
Combinatorial bounds

Solution Methods

Heuristics

Growing solutions: nearest neighbor, farthest neighbor, nearest insertion
 Improvement procedures: 2-opt, 3-opt
 Optimization Methods
 Bounding: LP relaxation, Lagrangian dual

Polyhedral methods (cutting planes)

Heuristics

Build Tour
 Nearest Neighbor
 Nearest/Farthest Insertion
 Improve Tour
 Swapping Edges

Insertion Heuristics

Tour Improvements

2-opt

Eliminate 2 arcs and reconnect

Choose best alternative at each step

Exploiting Embedded Structure

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

subject to $\sum_{j=1}^{n} x_{ij} = 1$ for all $i = 1, 2, \dots, n$

$$\sum_{i=1}^{n} x_{ij} = 1 \text{ for all } j = 1, 2, \dots, n$$

$$\sum_{i=2}^{n} \sum_{j=2}^{n} x_{ij} = n - 2$$

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1 \text{ for all } S \subseteq \{2, 3, \dots, n\}$$

 $x_{ii} \ge 0$ and integer

Redundant Constraint

Minimum spanning tree on nodes 2 to n

Underlying Structure

Decomposed Tour

Lagrangian Relaxation

$$L(u,v) = \text{minimize } \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} + \sum_{i=2}^{n} u_i \left[\sum_{j=1}^{n} x_{ij} - 1 \right] + \sum_{j=2}^{n} v_j \left[\sum_{i=1}^{n} x_{ij} - 1 \right]$$

subject to $\sum_{j=1}^{n} x_{1j} = 1$ $\sum_{i=1}^{n} x_{i1} = 1$ $\sum_{i=2}^{n} \sum_{j=2}^{n} x_{ij} = n - 2$ $\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1$ for all $S \subseteq \{2, 3, ..., n\}$ $x_{ij} \ge 0$ and integer

Improving Lagrangian Lower Bound

Solution x* to Lagrangian Relaxation

Too many arcs out Increase u_5 c_{5j} + u_5 + v_j more expensive Too few arcs out Decrease u_6 c_{6j} + u_6 + v_j less expensive

Solution Approach (Dual Ascent)

$\Box \text{ Solve } L(u,v)$

- Use costs c_{ii}+ v_i + u_i
- Select least cost arc out of and into node 1
- Find minimal spanning tree on nodes 2 to n (easy)

\Box Let x^* be optimal solution to L(u,v)

- Using x* alter u and v to increase lower bound L(u,v)
- Iterate to solve Lagrangian dual

 $d = \max_{u,v} L(u,v)$

Dual Ascent in General $v^* = \text{minimize } cx$ Complicating subject to Ax = b**Constraints** $x \in X$ e.g., $X = \{x : Dx = d, x \ge 0\}$

Lagrangian Dual L(u) = minimize cx + u[Ax - b]subject to $x \in X$

Dual Ascent in General

If
$$L(u^{k}) = cx(u^{k}) + u^{k} \begin{bmatrix} Ax(u^{k}) - b \end{bmatrix}$$

 $\nabla L(u^{k}) \approx Ax(u^{k}) - b$
 $u^{k+1} = u^{k} - \theta_{k} \begin{bmatrix} Ax(u^{k}) - b \end{bmatrix}$
 $\theta_{k} = \frac{\lambda_{k} \begin{bmatrix} cx(u^{k}) - v^{*} \end{bmatrix}}{\|Ax(u^{k}) - b\|^{2}}$

Dual Ascent ConvergenceTheoremIf $0 < \varepsilon_1 \leq \lambda_k \leq 2 - \varepsilon_2$ and $\left\|Ax(u^k) - b\right\|$ are bounded,

then $c(x^k)$ converges to v^* .

In practice, continue with fixed λ_k except half λ_k after some number (50?) of iterations if $c(x^k)$ doesn't decrease

Solving Minimum Spanning Tree

Greedy (Kruskal Algorithm) Order arcs from smallest to highest costs □ Choose arcs in order If arc does not form an undirected circuit with arcs already chosen, then choose arc; **Otherwise eliminate arc from** consideration

Amazing Facts!

Greedy algorithm (and several variants) solves the minimum spanning problem

The linear programming relaxation of the formulation we have given for the minimum spanning problem always has an integer solution (the underlying polyhedron has integer extreme points)

Solving Network Flow Problems

Giden (Graphical Environment for Network Optimization)

Demonstration of

- Minimum spanning trees
- Maximum flows
- Minimum cost flows

(Based on Ahuja, Magnanti, Orlin's book Network Flows)

2103 hole printed circuit board example

11,849 hole printed circuit board example

11,849 hole printed circuit board solution

13,094,345 seconds total on 55 CPUs

Traveling salesman problem through 15,112 cities in Germany

22.6 years of computation on network of 110 Processors

See http://www.math.princeton.edu/tsp/

Today's Lessons

- Traveling salesman problem arises in numerous applications
- Problem is a large-scale integer program
- Many heuristic methods: often find good solutions
- Lagrangian dual (bounding) exploits special problem structure (embedded minimal spanning tree)
- MST is easy to solve

We did NOT examine polyhedral (cutting plane) methods