Network Design: Network Loading and Pup Matching

Thomas L. Magnanti

Today's Agenda

Network design in general Network loading Solution approaches Polyhedral combinatorics Heuristics Pup matching

Network Design: Basic Issue

Total (Fixed) Cost on Each Arc

Commodity k: Origin O(k) Destination D(k) Flow req. r^k

Link (i,j): Fixed cost F_{ij} Flow cost c_{ij}

Possibly: Capacity C per unit installed on any edge

Network Design Applications

Telecommunications systems
Airline route maps
Chip design
Facility location
Even TSP!

Multicommodity Flow Model with Complex Costs

minimize c(f)subject to $Nf^{k} = b^{k}$ for k = 1, 2, ..., K $f = (f^{1}, f^{2}, ..., f^{K}) \ge 0$ $k = \begin{pmatrix} r^{k} \text{ if } i = O(k) \\ -r^{k} \text{ if } i = D(k) \\ 0 \text{ otherwise} \end{pmatrix}$ $f = (f^1, f^2, ..., f^K) \ge 0$ (possible flow bounds on f_{ii}^{k}) $c(f) = \sum_{(i,j)\in A} c_{ij}(f_{ij})$ separability $c(f) = \sum_{(i,j) \in A} l_{ij} c(f_{ij})$ proportionality $f_{ij} = \sum_{k} f_{ij}^{k} \quad \left(f_{ij} = \sum_{k} w^{k} f_{ij}^{k} \right)$

Basic Cost Structures

Network Loading Cost

Other Cost Structures

Integer Programming Model

minimize $\sum_{k} c^{k} f^{k} + \sum_{(i, j) \in E} F_{ij} y_{ij}$ subject to $Nf^{k} = b^{k}$ k = 1, 2, ..., K $\sum_{k} \left(f_{ij}^{k} + f_{ji}^{k} \right) \leq C y_{ij} \quad \{i, j\} \in E$ (1) $f_{ii}^k \leq \overline{r}^k y_{ii} \quad \{i, j\} \in E, \text{ all } k$ (2) $f = (f^1, f^2, ..., f^K) \ge 0$ $y_{ii} \ge 0$ and integer all $\{i, j\} \in E$ (configuration constraints and y)

Cuts for Lower Bounds

 LP relaxations yield lower bounds
 Addition of cuts can tighten bounds
 Cut away solutions to the LP relaxation but leave all feasible integer points

Network Loading Model

subject to

$$\sum_{\{j:(i,j)\in A\}} f_{ij}^{k} - \sum_{\{j:(j,i)\in A\}} f_{ji}^{k} = \begin{cases} 1, & i = O(k) \\ -1, & i = D(k) \text{ all } k \in K, i \in N \\ 0, & \text{otherwise} \end{cases}$$

$$\sum_{k \in K} \left(f_{ij}^k + f_{ji}^k \right) \le C y_{ij} \text{ all } \{i,j\} \in \mathbf{E}$$

 $f_{ij}^k \ge 0, y_{ij} \ge 0$ and integer

General Cutset Inequality

D_{ST} = total demand (nodes in S to nodes in T)

Cutset Inequalities Aren't Sufficient

Capacity C = 1 Demand = 1 between all non-adjacent nodes

> Loading 1 unit on all visible edges satisfies cutset inequalities, but not feasible

Pup Matching

Example

optimal solution is 9

Pup Matching

□ Instance: A directed network G = (N,A), a set of K pairs of elements from N, and a cost function c: A→R+.

□ Problem: Find the minimum cost loading of G permitting unit flow from the first to the second node of each of the K pairs such that 1 unit or 2 units together can traverse an arc for each unit of loading. One unit of loading on a ∈A costs c(a).

Example on City Blocks

Solution with cost 196

Several days computation can prove only that the objective is at least 184 (LP lower bound = **182).** Can we do better?

Heuristics for Upper Bounds

Matching Heuristic permits each pup to be paired with at most one other pup solved with a weighted matching routine Shortest Path Heuristics three variations Each heuristic provides a 2-approximation to the NLP formulation

Odd Flow Inequality

□ If the flow on an arc is odd, one unit of loaded capacity will be unused

□ If the net demand of a node is odd, the total inflow or total outflow is odd $\sum_{i} (y_{ij} + y_{ji}) - \frac{1}{2} \left(\sum_{k} \sum_{i} (f_{ij}^{k} + f_{ji}^{k}) \right) \ge \frac{1}{2}$

Odd Flows on the City Block

Each of the 56 nodes must be incident to at least one arc with unit of spare capacity **U** solution requires at least $\left[\frac{1}{2} \cdot \frac{56}{2}\right] = 14$ cabs' worth of empty capacity LP relaxation of 182 gives lower bound on required used capacity **U** 196 is optimal

Gap Reductions on City Block Problems

Trials Using Realistic Data

 Node set given in (latitude, longitude) format based on a real logistics network
 Defined problems by choosing a subset of nodes, calculating arc lengths, and randomly selecting O-D pairs
 30 problems, about half single origin
 Complete graphs, 12-25 nodes, 6-50 pups

Results

Branch and Bound limited to 2 hours CPU time and a 220M tree

- With all 3 cut families, 67% were solved to optimality with an average gap reduction of 18.8% to 6.4%
- Without odd flow cuts, 30% were solved, and the gap was reduced to 7.8% on average
- □ With no cuts, 17% were solved
- Among solved problems, average heuristic error was 1.3%

Conclusions and Extensions

- Extensions apply to compartmentalized problems
- Cuts seem critical to provably solving the PM problem
- Odd flow inequalities define what seems an important set of facets
 - generalize to arbitrary capacity
 - can generalize to several facilities?
- Are there other cuts based on even-odd type arguments?

Many, Many Network Design Variants

Network loading for compartmentalized capacity airline capacity planning, tanker trucks Network survivability Network restoration Hierarchical designs □...

Today's Lessons

Network design arises in numerous applications Problem is a large-scale integer program Introduction to cutting planes (polyhedral combinatorics) Cutting planes valuable in tightening formulations and in problem solving

Module on Large-Scale Integer Programming & Combinatorial Optimization

Three Lectures

Traveling salesman problem

Facility location

Network design

Games/Challenges Applications, Models, and Solution Methods