Traffic Effective Route Guidance Forecast: Number of cars will increase further in Traffic Networks Infrastructure will not be enhanced to the same extent Fact: **Remedy**: Improve the efficiency of traffic by other means Lectures developed by Andreas S. Schulz and Nicolás Stier May 12, 2003 ©2003 Massachusetts Institute of Technology ©2003 Massachusetts Institute of Technology Outline 2002 Urban Mobility Study (http://mobility.tamu.edu/ums) • Lecture 1 "The bad news is that even if transportation officials do all the right Route Guidance; User Equilibrium; System things, the likely effect is that congestion will continue to grow. . . Optimum; User Equilibria in Networks with Capacities. • Total congestion "bill" in 2000 was \$67.5 billion (= 3.6 billion hours delay + 5.7 billion gallons gas)• Lecture 2 Constrained System Optimum; Dantzig-Wolfe 1982 2000 Constrained Shortest Paths; Decomposition: Computational Results. time penalty for peak period travelers 16 hours 62 hours © 2003 Massachusetts Institute of Technology © 2003 Massachusetts Institute of Technology Problem The Context • Olaf Jahn (Research Assistant). • Rolf H. Möhring (Principal Investigator). People travel (between 6% and 19%) too much because Collaboration with and support by DaimlerChrysler, Berlin. of an unfavorable selection of their route. (Beccaria & Bolelli 1992, Lösch 1995) • Nicolas Stier (Research Assistant). • Andreas S. Schulz (Principal Investigator). Supported by General Motors Innovation Grant and SMA. ©2003 Massachusetts Institute of Technology ©2003 Massachusetts Institute of Technology

Shortest P	ath Routing		Potent	ial Remedies	
			• Toll systems		
			• Dynamic traffic signal co	ontrol	
			 Park and Ride 		
			• Traveller information sys	tems	
Improved network p	erformance, but		,		
(Kaufman et al. 1991, Lee 1994)					
©2003 Massachusetts Institute of Technology	Route Guidance	9	©2003 Massachusetts Institute of Technology		6
Shortest Pa	th Routing II				
			Route	Guidance	
the same simulations sho as soon as many c	ow the performance do ars use the system.	ecreases			
©2003 Massachusetts Institute of Technology	Route Guidance	10	©)2003 Massachusetts Institute of Technology	Route Guidance	7
Proposed	ed Solutions In-Car Navigation Systems				
 Multiple path routin k shortest paths 	g:				
– random perturbati	on				
• Feedback control:					
 iterative computat 	ion of shortest paths				
• Traffic assignment:					
– user equilibrium					
– a new approach					
©2003 Massachusetts Institute of Technology	Route Guidance	11	©2003 Massachusetts Institute of Technology	Route Guidance	8

Modeling Assumptions

Reality	Our Model
 microscopic → individual vehicles → exact position, speed 	• macroscopic \rightarrow one abstract measure \rightarrow traffic flow
 dynamic → consider time → on a single point at any time 	 static → time independent → simultaneously at any point of the path
\bullet on-line $\rightarrow~$ additional input over time	• off-line \rightarrow all data known in advance
©2003 Massachusetts Institute of Technology	The Traffic Model

selfish users	central planner	the goal
optimize own travel time	optimize system welfare	
fair, not efficient	efficient, not fair	fair, efficient

Representation of the Road Network

15

How much can one gain?

- Study worst-case ratios between guided / unguided traffic
- Without guidance: use game theory to predict traffic (Wardrop 1952)
- Users' behavior modeled as user equilibrium (Nash eq.)
- Price of anarchy is a measure of user equilibrium performance (Papadimitriou 2001)

