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Effective Route Guidance 
Forecast: Number of cars will increase further 

in Traffic Networks 
Fact: Infrastructure will not be enhanced to the same extent 

Remedy: Improve the efficiency of traffic by other means Lectures developed by 
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2002 Urban Mobility Study Outline 
(http://mobility.tamu.edu/ums) 

• Lecture 1 
“The bad news is that even if transportation officials do all the right 
things, the likely effect is that congestion will continue to grow. . . ” 

• Total congestion “bill” in 2000 was $67.5 billion 

Route Guidance; User Equilibrium; System 

Optimum; User Equilibria in Networks with 

Capacities. 

(= 3.6 billion hours delay + 5.7 billion gallons gas) • Lecture 2 

1982 2000 

time penalty for peak period travelers 16 hours 62 hours 

c�2003 Massachusetts Institute of Technology 4 

Constrained System Optimum; Dantzig-Wolfe 

Decomposition; Constrained Shortest Paths; 

Computational Results. 
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Problem The Context 

• Olaf Jahn (Research Assistant). 

People travel (between 6% and 19%) too much because 

of an unfavorable selection of their route. 

• Rolf H. Möhring (Principal Investigator). 

Collaboration with and support by DaimlerChrysler, Berlin. 

(Beccaria & Bolelli 1992, Lösch 1995) • Nicolas Stier (Research Assistant). 

• Andreas S. Schulz (Principal Investigator). 

Supported by General Motors Innovation Grant and SMA. 
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Shortest Path Routing Potential Remedies 

• Toll systems 

• Dynamic traffic signal control 

• Park and Ride 

• Traveller information systems 

Improved network performance, but . . . 

(Kaufman et al. 1991, Lee 1994) 
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Shortest Path Routing II 

. . . the same simulations show the performance decreases 

Route Guidance 

as soon as many cars use the system. 
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Proposed Solutions In-Car Navigation Systems 

• Multiple path routing: 

– k shortest paths 
– random perturbation 

• Feedback control: 

– iterative computation of shortest paths 

• Traffic assignment: 

– user equilibrium 
– system optimum 
– a new approach 
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Modeling Assumptions 

Reality Our Model 

• microscopic 
→ individual vehicles 

• macroscopic 
→ one abstract measure 

→ exact position, speed → traffic flow 

• dynamic 
→ consider time 
→ on a single point at 

any time 

• static 
→ time independent 
→ simultaneously at any 

point of the path selfish users central planner the goal 
optimize own travel time optimize system welfare 

• on-line • off-line fair, not efficient efficient, not fair fair, efficient 

→ additional input over time → all data known in advance 
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Representation of the Road Network How much can one gain ? 

• Study worst-case ratios between guided / unguided traffic 

• Without guidance: use game theory to predict traffic 
(Wardrop 1952) 

• Users’ behavior modeled as user equilibrium (Nash eq.) 

• Price of anarchy is a measure of user equilibrium performance 

(Papadimitriou 2001) 
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Flows 

• Different drivers have different 
origins and destinations 

• Flows on paths: 
The Traffic Model 

fP is the traffic along path P 

• Flow on arcs: 

fa = 
P

�
:a∈P 

fP 
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=min f2
b + 1 − fb = 3/4 and fa = 1

2

s.t. 0 ≤ fb ≤ 1 fb = 1
2

The Traffic Model Traversal Time Functions 

ta(fa) 

• Directed graph G = (V,A), 2 2 
k demands (oi, di) with rate ri 

00 
• Flows on paths fP . Can be non-integral. 

• Traversal times: latency functions ta(·) 
→ continuous and nondecreasing 

2x x + 11 

2 2 
fa0 

→ belong to a given set L (e.g. linear) 0 0 • Traversal time of an arc a depends on the flow fa on a 

• The total travel time of a flow is: 2 2 • Dependence captured by the function ta(fa) 

C(f) :=
�
a∈A 

ta(fa)fa 
2 · 4 + 2 · 1 = 10  • Travel time along path P is denoted by tP (f) =

�
a∈P ta(fa) 
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System Optimum The Traffic Model 

Convex Multicommodity Min-Cost Flow Problem 
• Directed graph G = (V,A), 2 2 

min 
�
a∈A 

ta(fa)fa k demands (oi, di) with rate ri 

00 

s.t. 
�
P�a 

fP = fa for all a ∈ A 

�
P∈Pi 

fP = ri for all i = 1, . . . , k  

fP ≥ 0 for all P ∈ P  

• Flows on paths fP . Can be non-integral. 

• Traversal times: latency functions ta(·) 
→ continuous and nondecreasing 
→ belong to a given set L (e.g. linear) 

2x 1 

00 

x + 1  

• The total travel time of a flow is: 2 2 

where Pi : set of paths from oi to di 

P = ∪Pi 

C(f) :=
�
a∈A 

ta(fa)fa 
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Example of SO The Traffic Model 

(Pigou 1920) 1 

• Directed graph G = (V,A), 
k demands (oi, di) with rate ri 

2 2 

11 
• Flows on paths fP . Can be non-integral. 

00 

x 
• Traversal times: latency functions ta(·) 
→ continuous and nondecreasing 

2x 1 

2 2 

x + 1  

SO =min fa + f2 
b 

→ belong to a given set L (e.g. linear) 0 0 

s.t. fa + fb = 1  • The total travel time of a flow is: 2 2 

fa, fb ≥ 0 C(f) :=
�
a∈A 

ta(fa)fa 
2 · 1 + 2 · 3 = 8  
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c

Braess Paradox Example of SO 

• UE non-monotone with network improvements (Braess 1968) 
(Pigou 1920) 1 

1/2 

1x 11 

11 1/2 

1 x 
x 

SO =min fa + f2 
b =min f2 

b + 1 − fb = 3/4 and fa = 1 
2 

s.t. fa + fb = 1  s.t. 0 ≤ fb ≤ 1 fb = 1 
2 

fa, fb ≥ 0 
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Braess Paradox User Equilibrium 

• UE non-monotone with network improvements (Braess 1968) Definition : A  flow  is  a  UE iff nobody can switch 
to a path with smaller travel time. 

1 
1/2 

111 

x 

1 C(f) = 3 
2 

• Travel times of users between the same OD-pair are equal 

• UE always exists and is unique (Beckmann et al. 1956) 

1 1/2 x 
1 

11 

x 
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Braess Paradox User Equilibrium 

• UE non-monotone with network improvements (Braess 1968) Definition : A  flow  is  a  UE iff nobody can switch 
to a path with smaller travel time. 

1 
1/2 

111 

x 

1 C(f) = 3 
2 

• Travel times of users between the same OD-pair are equal 

• UE always exists and is unique (Beckmann et al. 1956) 

1 1/2 x 
1 

1x 11 

11 0 1 

1 x 
x 
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Networks with Capacities 

• Latencies model capacity only implicitly 

What is the impact of having 
explicit capacities on arcs? 00 

2 2 

Braess Paradox 

• UE non-monotone with network improvements (Braess 1968) 

1 
1/2 

1111 

x 

C(f ) = 3 
2 

• Introduce capacities as Mx xcap=20 1 1/2 x 

hard constraints 

00 
• Straightforward to define SO 1x 

• What is now a UE? 
2 2 1 1111 0 C(f ) = 2  

1 x 
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Equilibria in Networks with Capacities 

Definition : A  flow  is  a  capacitated UE iff nobody can switch 
to a path with smaller travel time and residual capacity 

• Travel times for users of same demand 

2 2 

Price of Anarchy measures impact of 
lack of Central Coordination 

(Papadimitriou 2001) 

Price of Anarchy γ := max 
inst. 

C(UE) 
C(SO) 

may differ (were constant w/o cap.) 00 • In general, γ unbounded (Roughgarden & Tardos 2000) 

• There may be multiple equilibria 
(UE w/o cap. was unique) 

Mx xcap 
=2

0 
• If latencies are in L, γ ≤ α(L), where α(L) depends only on L 

In particular, α({linear latencies}) = 4/3 
(Roughgarden & Tardos 2000) 

00 (Roughgarden 2002) 
• How good is the best / worst eq. ? 

2 2 • Pigou’s and Braess’ examples are worst possible 
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Multiple Equilibria 

2 2 2 2 22 2 2 

0 

00 

00 

Mx xcap=2 2 22 2 
2 

1+M 
2M 

1+M 
2 

1+M 
2M 

1+M Networks with Capacities 

2 2 2 2 22 2 2 

with costs of: 4 4 M 4 M 
1+M 

Worst UE can be unbounded! 
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• Let Cf(x) =
�

a xa ta(fa)

• For all flows x: C(f) ≤ Cf(x)

(same as
�

a(xa − fa)ta(fa) ≥ 0, the condition for )

• Cf(x) =
�

a xa(qafa + ra) ≤
�

a xa(qaxa + ra) + 1
4

�
a f2

a qa

because (x − f/2)2 ≥ 0

• Last,
�

a xa(qaxa + ra) + 1
4

�
a f2

a qa ≤ C(x) + 1
4C(f)

⇒ 3
4 C(f) ≤ C(x)

• For all flows x: C(f) ≤ Cf(x)

(same as
�

a(xa − fa)ta(fa) ≥ 0, the condition for )

• Cf(x) =
�

a xa(qafa + ra) ≤
�

a xa(qaxa + ra) + 1
4

�
a f2

a qa

because (x − f/2)2 ≥ 0

• Last,
�

a xa(qaxa + ra) + 1
4

�
a f2

a qa ≤ C(x) + 1
4C(f)

⇒ 3
4 C(f) ≤ C(x)

Network with Capacities: Guarantees 

Theorem. For any instance of a network with capacities 

with latencies in L, we have 

C(BUE) ≤ α(L)C(SO) 

In particular, if latencies are linear, C(BUE) ≤ 4 
3 C(SO) 

Convex Optimization Review 

• Let z be a continuously differentiable and convex function on a 
convex set. 

• Then x ∗ is a global minimum of z iff 

the gradient along all feasible directions is non-negative 
Guarantee does not change with 
introduction of capacities 
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Proof (for the Linear Case) Beckmann UE 

• Assume ta(fa) = qafa + ra for all a and let f = BUE • Space of UE non-convex: Difficult to get Best UE 

• Instead, Beckmann UE (BUE) is 

min 
�
a∈A 

� fa 

0 

ta(x)dx 

subject to f feasible flow 
capacity constraints 

• Opt. Cond. BUE: g feasible direction ⇒ �
a gata(fa) ≥ 0 
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Proof (for the Linear Case) Beckmann UE is an Equilibrium 

• Assume ta(fa) = qafa + ra for all a and let f = BUE Lemma. f is a BUE ⇒ f is a UE 

• Let Cf(x) =
�

a xa ta(fa) Proof : 

• Suppose f is not a UE ⇒ ∃  two paths P,Q s.t. 
flow can be re-routed from P to Q and tP (f) > tQ(f) 

• P and Q define a circulation g which is a feasible direction 
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• �
a gata(fa) < 0 ⇒ f is not a BUE 

But BUE is not necessarily the best equilibrium 
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• Cf(x) =
�

a xa(qafa + ra) ≤
�

a xa(qaxa + ra) + 1
4

�
a f2

a qa

because (x − f/2)2 ≥ 0

• Last,
�

a xa(qaxa + ra) + 1
4

�
a f2

a qa ≤ C(x) + 1
4C(f)

⇒ 3
4 C(f) ≤ C(x)

• Last,
�

a xa(qaxa + ra) + 1
4

�
a f2

a qa ≤ C(x) + 1
4C(f)

⇒ 3
4 C(f) ≤ C(x)

Non-convexity of UE Proof (for the Linear Case) 

2 2 • Assume ta(fa) = qafa + ra for all a and let f = BUE 

BUE UE 

SO 

w 

x 

2 

11 1 

00 

cap 
=2 

• Let Cf(x) =
�

a xa ta(fa) 

• For all flows x: C(f) ≤ Cf(x) 

(same as 
�

a(xa − fa)ta(fa) ≥ 0, the condition for BUE) 

z w 
feasible flows 

00 0 
210 z 

2 2 
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Best vs. Beckmann Proof (for the Linear Case) 

• The BUE does not need to be best UE: • Assume ta(fa) = qafa + ra for all a and let f = BUE 

2 2 

00 

• Let Cf(x) =
�

a xa ta(fa) 

• For all flows x: C(f) ≤ Cf(x) 

1 

00 

xx + 1  
cap 
=1 

(same as 
�

a(xa − fa)ta(fa) ≥ 0, the condition for BUE) 

• Cf(x) =
�

a xa(qafa + ra) ≤ 
�

a xa(qaxa + ra) + 1 
4

�
a f

2 qaa 

because (x − f/2)2 ≥ 0 

2 2 
C(BUE) = 7  and C(best UE) = C(SO) = 6.875 
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Review Proof (for the Linear Case) 

• Assume ta(fa) = qafa + ra for all a and let f = BUE 

No capacities With capacities 

UE unique Set of UE 
may be non-convex 

UE/SO ≥ α(L) UE/SO unbounded 

• Let Cf(x) =
�

a xa ta(fa) 

• For all flows x: C(f) ≤ Cf(x) 

(same as 
�

a(xa − fa)ta(fa) ≥ 0, the condition for BUE) 

• Cf(x) =
�

a xa(qafa + ra) ≤ 
�

a xa(qaxa + ra) + 1 
4

�
a f

2 qaa 

because (x − f/2)2 ≥ 0 

UE/SO ≤ α(L) BUE/SO ≤ α(L) • Last, 
�

a xa(qaxa + ra) + 1 
4

�
a f

2 qaa ≤ C(x) + 1 
4C(f) 

⇒ 3 
4 C(f) ≤ C(x) 
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