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1 Lecture  

1.1 Outline 

•	 Cutting Stock Problem 

•	 Classical Integer Programming Formulation 

•	 Set Covering Formulation 

•	 Column Generation Approach 

•	 Connection with Lagrangian Relaxation 

•	 Computational issues 

2 Cutting Stock Problem 

2.1 Introduction 

2.1.1 Example 

Slide 1 

Slide 2 
•	 A paper company has a supply of large rolls of paper, each of width W . 

Slide 3 

•	 Customers demand ni rolls of width wi (i=1, . . . , m). (wi ≤ W ) 

Example: 

Quantity Ordered ni Order Width (inches) wi 

97 45 
610 36 
395 31 
211 14 

Slide 4 

•	 The demand can be met by slicing a large roll in a certain way, called a 
pattern. 

•	 For example, a large roll of width 100 can be cut into 
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– 4 rolls each of width 25, or 

– 2 rolls each of width 35, with a waste of 30. 

3 Solution Approach I 

3.1 L. V. Kantorovich 

3.1.1 Formulation 
Slide 5 

(1939 Russian, 1960 English) “Mathematical Methods of Planning and Organ-
ising Production” Management Science, 6, 366-422. 

• K: Set of available rolls. 

• yk : 1 if roll k is cut, 0 otherwise. 

• xk : number of times item i is cut on roll k.i 

Objective: To minimize the number of rolls used to meet all the demand 

kmin y 
k∈K 

Slide 6 
Constraints 

• Total number of times item i is cut is not less than the demand. 

k xi ≥ ni 

k∈K 

• The width of a roll is at most W 

k wixi ≤ Wyk 

i 
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kmin k∈K y
ks.t. k∈K xi ≥ ni for a fixed item i,

k ≤ Wyk 

i wixi for fixed roll k,


xk ≥ 0, 0 ≤ yk ≤ 1
i


Integrality constraints on all variabes 

3.1.2 Quality of Solution 
Slide 8


Scenario I: N1 

• ni : uniform, between 1 and 100 (rand(100)+1); 

• wi : uniform, between 1 and 30 (rand(30)+1); 

• Width of Roll, W = 3000; 

Rolls Items constr variables CPU (s) 
30 60 90

50 100 150

100 200 300

200 400 600


1830 2.8

5050 14.33

20100 179

80200 3048


Note 1 Code 

The OPL code for the problem: 
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Slide 9 
Scenario II: Change width of the roll from 3000 to 150. 
Rolls Items constr variables CPU (s) 
70 10 80 770 3.18 - never 
140 20 160 2940 58.28 - never 
210 30 240 6510 Out of memory 

The performance has deteriorated. Why? Slide 10 
How good is the LP relaxation? 

winiObservation: ZLP = i 

W . N2 
This bound is trivial: The objective is to 

kmin y 
k∈K 

the optimal solution will satisfy: 

• Choose yk as small as possible. Therefore 

k wixi = Wyk 

i 

for all k 
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k• Choose xi as small as possible. Therefore 

k xi = ni 

k 
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for all i. 

∑ 
y k = 

∑ ∑ 
i wix

k 
i 

W 
= 

∑ ∑ wi 

W 
x k 

i 
k∈K k∈K i k∈K 

= 
∑ wi 

W 

∑ 
x k 

i = 
∑ wini 

W 
i k∈K i 

Note 2 Proof 

We have the constraints 
k wixi ≤ Wyk . 

i 

In the LP, since the objective is to minimize k y
k, the optimal LP solution 

will be such that 
k 

i wixi = y k . 
W 

kyk will be small if the xi values are small. At the same time, because 

k xi ≥ ni, 
k∈K 

kto make xi small, at the optimal solution, we must have 

k xi = ni. 
k∈K 

So the objective function, for the optimal LP solution, reduces to 

∑ ∑ k 
k = i wixi y 

W 
k∈K k∈K 

wi k= xiW 
i k∈K 

wi k= xiW 
i k∈K 

wini = 
W 

i 
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Another Example: W = 273 

Quantity Ordered Order Width (inches) 
233 18 
310 91 
122 21 
157 136 
120 51 
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• LP: solved in 0.27s. Solution 228.7106. 

• IP: halted after 12 hours of computational time! 

4 Approach II 

4.1 Gilmore and Gomory 

4.1.1 Set Covering 
Slide 13 

P. C. GILMORE AND R. E. GOMORY, A linear programming approach to the 
cutting-stock problem, Oper. Res., 8 (1961), pp. 849-859. 

xj = number of times pattern j is used 
aij = number of times item i is cut in pattern j 

For example, a large roll of width 100 can be cut into 

• 4 rolls each of width wi = 25 (pattern j, aij = 4)  

• 2 rolls each of width wk = 35 (pattern l, akl = 2)  
Slide 14 

nmin j=1 xj 
ns.t. j=1 aij xj ≥ ni, i = 1, . . . , m,  

xj ∈ Z+, j  = 1, . . . , n  
Slide 15 

Example: An instance: W = 100, m = 3. 

pattern 
wi 1 2 3 4 5 6  ni 

25 4 2 2 1 0 0 150 
35 0 1 0 2 1 0 200 
45 0 0 1 0 1 2 300 

Slide 16 
Another way to formulate the cutting stock problem: 

minimize 
∑6 

j=1 xj 

x1 x2 x3 x4 x5 x6 RHS 
4x1 + 2x2 + 2x3 + 1x4 + 0x5 + 0x6 ≥ 150 
0x1 + 1x2 + 0x3 + 2x4 + 1x5 + 0x6 ≥ 200 
0x1 + 0x2 + 1x3 + 0x4 + 1x5 + 2x6 ≥ 300 

xj = number of rolls to be cut using pattern j. 

4.1.2 Computational Issues 
Slide 17 

Linear relaxation: (LP) 

nmin j=1 xj 
ns.t. j=1 aij xj ≥ ni, i  = 1, . . .m,  

xj ≥ 0, j = 1, . . . , n  
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• LP solution provides a lower bound to IP. 
Slide 18 

How to solve (LP)? 

• Feasible patterns: all nonnegative integer vectors (z1, . . . , zm) satisfying 

m 

wizi ≤ W 
i=1 

• Not all feasible patterns are needed in the above formulation. 

Issue: In the constraint matrix A, the number of decision variables (i.e., number 
of feasible patterns) is large! 

5 Cutting Stock Problem 

5.1 Column Generation 

5.1.1 Algorithm 
Slide 19 

1. Start with a basic feasible solution B. 

For example, use the simple pattern to cut a roll into �W/wi� rolls of

width wi. (The basis matrix is a diagonal matrix.)


m2. For any pattern j, reduced cost is 1 − πiaij , where  (π1, . . . , πm)i=1 

(=cBB−1) is the simplex multipliers vector associated with the current

basis.


3. Identify a pattern with negative reduced cost, or prove that none exists.

Update basis and repeat.


Slide 20 
For instance, we may want to find the column with most negative reduced cost: 

m∗Z (π) =  min  1  − i=1 πixi 

subject to i wixi ≤ W, xi integral. 

∗• If Z (π) ≥ 0, all columns have negative reduced cost! 

• Otherwise, the solution gives rise to a column with negative reduced cost! 

5.1.2 Identifying Columns 
Slide 21 

mmin 1 − i=1 πixi 

subject to i wixi ≤ W, xi integral. 

is equivalent to solving 
m

Z ′(π)  =  max  πixi ∑ i=1

subject to i wixi ≤ W , xi integral.
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5.1.3 Knapsack problem 
Slide 22 

m
Z�(π) = max  

i=1 
πixi 

subject to 
i 
wixi ≤ W, 

xi integral. 

•	 The column generation method depends critically on how fast we can solve

the knapsack problem.


• How difficult is it to solve the knapssack problem? 
Slide 23 

Computational Result on random instances using the MIP solver from CPLEX: 

n CPU (s) 
1,000 0.22 
10,000 1.04 
100,000 75.52 

More specialized algorithm can be used to solve the Knapsack problem efficiently 
in practice. 

5.1.4 How Good is the bound? 
Slide 24 

Number of items = 5. 
Tested on several instances: 

Optimal Col Gen (LP) 
15 14.0533 
11 10.4733 
34 33.0989 
19 18.2867 

Round Up Conjecture: 

ZIP  ≤ �ZLP �? 

Slide 25 
Unfortunately, this is not true: 

• W = 273 

w1 = 18  n1 = 233 
w2 = 91  n2 = 310 

• w3 = 21  n3 = 122 
w4 = 136 n4 = 157

w5 = 51  n5 = 120
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ZLP (CG) = 228.9982. ZIP  = 230. N3 

Note 3	 Round Up Conjecture 

In 1985 the theoretical result of Marcotte (The cutting stock problem and integer 
rounding, Math. Programming, 33 (1985), pp. 82-92) shed light on the rela-
tionship between solutions of the LP relaxation and the cutting stock problem 
itself. She proved that for some practical instances of the problem a so-called 
round-up property is valid. It means that to find the optimal value of the cut-
ting stock problem, it is sufficient just to solve the LP relaxation and to round 
up the value of the objective function. 
Unfortunately, this conjecture is not true for all instances of the cutting stock 
problem. Fieldhouse (The duality gap in trim problems, SICUP-Bulletin No. 
5, 1990) presents an example of the cutting stock problem with a gap of 1.0333. 
This gives rise to the “modified” round up conjecture. 

5.1.5 Modified Round Up Conjecture 
Slide 26 

ZIP  ≤ �ZLP � + 1?  

•	 This conjecture has not been answered. 

•	 Can you disprove it? 

5.1.6 Getting Intergal Solution 
Slide 27 

The solution obtained from solving the column generation problem may frac
-
tional.

How to obtain integral solution?


- round up the fractional solution. (e.g., change 18.3 to 19). 

- round down the fractional solution, and resolve the problem with smaller

set of demand.


- branch and bound to obtain the optimal integral solution 

5.1.7 Rounding Up 
Slide 28 

•	 Let xj be the (fractional) LP solution obtained from the column generation

method.


• Let x′ 
j = �xj �. x′ integral. j 

j ai,j xj ≥ ni implies ′ 
j ≥ ni. So  x′ 

j defined in this way is a • j ai,j x
feasible integral solution. 

•	 How good is this heuristic? 
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W = 273 
w1 = 18  n1 = 233 
w2 = 91  n2 = 310 
w3 = 21  n3 = 122 
w4 = 136 n4 = 157 
w5 = 51  n5 = 120 

• ZLP (CG) = 228.9982. 

• Round-Up produces a solution of 231 
Slide 30 

Round-Up Fractional 18 91 21 136 51 
cut 0 0.0000 15 0 0 0 0 
cut 104 103.3333 0 3 0 0 0 
cut 9 8.2363 0 0 13 0 0 
cut 79 78.5000 0 0 0 2 0 
cut 0 0.0000 0 0 0 0 5 
cut 24 24.0000 1 0 0 0 5 
cut 15 14.9286 14 0 1 0 0 

Disadvantages of the round-up heuristic? 

6 Column Generation 

6.1 Dual Perspective 

6.1.1 Lagrangian Relaxation 
Slide 31 

How would you use LR to solve the cutting stock problem? 

min 
∑K k 

k=1 y∑K ks.t. k=1 xi ≥ ni ∀ i = 1, 2, . . . , m,  
m k 
i=1 xi wi ≤ Wyk ∀ k = 1, . . . , K,  

ky ∈ {0, 1} ∀ k, 
kxk ≥ 0, xi integral i 

Which constraints would you relax? Slide 32 
Suppose you relax the first class of constraints: 

m	 kL(u) =  min  
∑K 

k=1 y
k + i=1 ui ni − 

∑K 
k=1 xi 

m ks.t.	 i=1 xi wi ≤ Wyk ∀ k = 1, . . . , K,  
ky ∈ {0, 1} ∀ k, 

kxk ≥ 0, xi integral i 
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where ui ≥ 0 for all i.	 Slide 33 

K m 

L(u) =  Lk (u) +  uini 

k=1 i=1 

where 
m kLk (u) =  min  yk − 

∑
i=1 uixi 

m ks.t.	 i=1 xi wi ≤ Wyk 

ky ∈ {0, 1}
kk ≥ 0, xi integral xi 

∗Lk (u) is the minimum of the two values: zero (when yk = 0), or 1-Z (when Slide 34 
∗ yk = 1)  ,  where  Z is obtained by solving the knapsack problem 

∗ m kZ = max  i=1 uixi 
m ks.t.	 i=1 xi wi ≤ W 

kk ≥ 0, xi integral xi 

The subproblem in Lagragian Relaxation reduces again to a Knapsack problem! 
Slide 35 

Proposition: N4 

•	 maxu≥0 L(u) =  ZLP (CG). 

•	 The optimal Lanagrangian multiplers is the LP dual multiplers to the

constraints 

∑N
j=1 ai,j Kλj ≥ ni in the column formulation.


•	 Lagrangian relaxation solves the dual of the column formulation! 

Note 4	 Derivation of proposition 

K m 

L(u) =  Lk (u) +  uini 

k=1 i=1 

The value Lk (u) does not depend on the index k. 
m 

L(u) =  KL(u) +  uini 

i=1 

where 
mL(u) = min  y − i=1 uixi 

m 
s.t. i=1 xiwi ≤ Wy  

y ∈ {0, 1} 

xi ≥ 0, xiintegral 
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•	 Let zj = (a1,j , . . . , am,j ), j = 1, . . . , N  be the extreme points of the poly-
tope 

m 

xiwi ≤ W, xi ≥ 0, xi integral. 
i=1 

m	 ∑m • L(u) = min(0, 1−maxj=1,...,N i=1 ai,j ui) =  minj=1,...,N min(0, 1− i=1 ai,j ui) 

m 

L(u) =  KL(u) +  uini 

i=1 

The Lagrangian Dual 
( m 

max L(u) =  max  min K min(0, 1 − ai,j ui) 
u≥0 u≥0 j=1,...,N 

i=1 

m ) 

+ uini 

i=1 

reduces to 

max y 

s.t. y ≤ m 
i=1 uini for the zero extreme point 

y ≤ K(1 − 
∑m 

i=1 uiai,j ) +  
∑m 

i=1 uini for the jth extreme point 
ui ≥ 0 ∀ i = 1, . . . , m.  

Equivalently, 

max y 
(λ0) y − m uini ≤ 0i=1 

m m(λj ) y + K( uiai,j ) − uini ≤ Ki=1 i=1 

ui ≥ 0 ∀ i = 1, . . . , m.  

λ0, λj are the associated dual variables. 
The dual of this problem: 

min 
∑

j
N 
=1 Kλj 

λ0 + 
∑N

j=1 λj = 1  ∑N−ni(λ0 + 
∑N

j=1 λj ) +  j=1 ai,j Kλj ≥ 0. 

λj ≥ 0 ∀ j = 1, . . . , N.  

This is just 

min 
∑

j
N 
=1 Kλj 
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λ0 + 
∑N

j=1 λj = 1  ∑N 
j=1 ai,j Kλj ≥ ni 

λj ≥ 0 ∀ j = 1, . . . , N.  

For K large, the constraint λ0 + 
∑N

j=1 λj = 1 is redundant – as long as there 

is a feasible solution λj with 
∑

j
N 
=1 λj ≤ 1 

Let xj = Kλj . We obtain the column formulation of the cutting stock problem 
! 

6.2 Lagrangian Relaxation 

6.2.1 Comparison 
Slide 36 

• The bounds obtained by both methods are identical. 

• Which method is better?  

Column Generation Langrangean Relaxation 

Primal, dual optimal solution Dual but not primal solution 

(Primal) Bounds monotone (Dual) Bounds zig-zag 

Dual solution zig-zag Dual solution suitably selected 

LP solver needed Easy to implement 

6.3 Speeding Up 

6.3.1 Column Selection 
Slide 37 

• Prevent generation of redundant columns. 

Instead of minj cj − πTNj , solve  

min 
cj 

j:πT Nj>0 πT Nj 
, 

or 
cj − πTNjmin 

j 1T Nj 
. 

Slide 38 

• minj cj − πTNj versus minj
cj−πTNj 

1T Nj 

Round-Up Fractional 18 91 21 136 51 
cut 0 0.0000 15 0 0 0 0 
cut 104 103.3333 0 3 0 0 0 
cut 9 8.2363 0 0 13 0 0 
cut 79 78.5000 0 0 0 2 0 
cut 0 0.0000 0 0 0 0 5 
cut 24 24.0000 1 0 0 0 5 
cut 15 14.9286 14 0 1 0 0 
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•	 Maintain a column pool. 

Check for columns with negative reduced cost in the column pool before

solving the pricing subproblem. Replenish the column pool everytime you

solve a pricing subproblem.


6.3.2 Dual Selection 
Slide 39 

Restrict domain of dual prices 

Use properties of optimal dual prices to restrict the domain.

In the cutting stock problem, suppose the orders are ranked such that w1 <

w2 <  . . .  <  wm, then it is easy to see that the dual prices satisfy:


π1 ≤ π2 ≤ . . .  ≤ πm. 

Translating into the primal, this is equivalent to adding the following columns 
with zero cost to the primal problem: 

      
1 0 0   1    −1	 · · ·         0     −1 · · ·          ,    · · ·  0 ,  . . . · · ·             0  · · ·  · · ·             1  

0 0 −1 
· · ·  · · ·  

7 Column Generation 

7.1 Applications 

7.1.1 Examples 
Slide 40 

Other application of column generation: 

Vehicle Routing with time window or other types of constraint: 

•	 A set  of  m customers. 

•	 Each customer must be served within certain time window. 

•	 Find a set of routes to serve all the customers, so that each customer will

be visited by a vehicle within the stipulated time window.


Here each column may represent a feasible trip. One likely objective is to find 
minimal number of vehicles to cover all the customers. Slide 41 
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Column generation phase now reduces to the following: Given a profit πi for 
each demand point, find a route that satisfies: 

•	 feasibility constraints (meet the time window constraints); 

•	 total profits accrued by serving the demand points on the route is maxi
-
mum - a variant of the TSP problem.


N5 

Note 5	 Papers 

•	 J. Desrosiers, Y. Dumas,F. Soumis & M. Solomon. Time Constrained 
Routing and Scheduling, Handbooks in OR & MS, 8 (1995) 

•	 G. Desaulniers et al. A Unified Framework for Deterministic Vehicle Rout-
ing and Crew Scheduling Problems T. Crainic & G. Laporte (eds) Fleet 
Management & Logistics (1998). 

8 Conclusions 

•	 Column Generation has been successfully used to solve many large scale 
integer programming problem arising in the industry. 

•	 Able to handle large scale model that standard commercial MIP solver 
cannot handle. 

•	 Ability to solve the pricing subproblem efficiently is key to the approach 

•	 Connection between Column generation and Lagragian Relaxation 

•	 Non-linearities occuring in practical problems taken care of in the sub-
problem (next lecture) 
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