Working with the Basis Inverse over a Sequence of Iterations

Robert M. Freund
February, 2004
© 2004 Massachusetts Institute of Technology.

1 Equations Involving the Basis Matrix

At each iteration of the simplex method, we have a basis consisting of an index of variables:

$$
B(1), \ldots, B(m),
$$

from which we form the basis matrix B by collecting the columns $A_{B(1)}, \ldots, A_{B(m)}$ of A into a matrix:

$$
B:=\left[A_{B(1)}\left|A_{B(2)}\right| \ldots\left|A_{B(m-1)}\right| A_{B(m)}\right] .
$$

In order to execute the simplex method at each iteration, we need to be able to compute:

$$
\begin{equation*}
x=B^{-1} r_{1} \quad \text { and } / \text { or } \quad p^{T}=r_{2}^{T} B^{-1} \tag{1}
\end{equation*}
$$

for iteration-specific vectors r_{1} and r_{2}, which is to say that we need to solve equation systems of the type:

$$
\begin{equation*}
B x=r_{1} \quad \text { and } / \text { or } \quad p^{T} B=r_{2}^{T} \tag{2}
\end{equation*}
$$

for x and p.

$2 L U$ Factorization

One way to solve (2) is to factor B into the product of a lower and upper triangular matrix L, U :

$$
B=L U,
$$

and then compute x and/or p as follows. To compute x, we solve the following two systems by back substitution:

- First solve $L v=r_{1}$ for v
- Then solve $U x=v$ for x.

To compute p, we solve the following two systems by back substitution:

- First solve $u^{T} U=r_{2}^{T}$ for u
- Then solve $p^{T} L=u^{T}$ for p.

It is straightforward to verify that these procedures yield x and p that satisfy (2). If we compute according to these procedures, then:

$$
B x=L U x=L v=r_{1} \quad \text { and } \quad p^{T} B=p^{T} L U=u^{T} U=r_{2}^{T} .
$$

3 Updating the Basis and its Inverse

As the simplex method moves from one iteration to the next, the basis matrix B changes by one column. Without loss of generality, assume that the columns of A have been re-ordered so that

$$
B:=\left[A_{1}|\ldots| A_{j-1}\left|A_{j}\right| A_{j+1}|\ldots| A_{m}\right]
$$

at one iteration. At the next iteration we have a new basis matrix \tilde{B} of the form:

$$
\tilde{B}:=\left[A_{1}|\ldots| A_{j-1}\left|A_{k}\right| A_{j+1}|\ldots| A_{m}\right] .
$$

Here we see that column A_{j} has been replaced by column A_{k} in the new basis.

Assume that at the previous iteration we have B and we have computed an $L U$ factorization of B that allows us to solve equations involving B^{-1}. At the current iteration, we now have \tilde{B} and we would like to solve equations involving \tilde{B}^{-1}. Although one might think that we might have to compute an $L U$ factorization of \tilde{B}, that is not the case. Herein we describe how the linear algebra of working with \tilde{B}^{-1} is computed in practice. Before we describe the method, we first need to digress a bit to discuss rank- 1 matrices and rank-1 updates of the inverse of a matrix.

3.1 Rank-1 Matrices

Consider the following matrix:

$$
W=\left(\begin{array}{cccc}
-2 & 2 & 0 & -3 \\
-4 & 4 & 0 & -6 \\
-14 & 14 & 0 & -21 \\
10 & -10 & 0 & 15
\end{array}\right)
$$

W is an example of rank- 1 matrix. All rows are linearly dependent and all columns are linearly dependent. Now define:

$$
u=\left(\begin{array}{c}
1 \\
2 \\
7 \\
-5
\end{array}\right) \quad \text { and } \quad v^{T}=\left(\begin{array}{llll}
-2 & 2 & 0 & -3
\end{array}\right) .
$$

If we think of u and v as $n \times 1$ matrices, then notice that it makes sense to write:

$$
W=u v^{T}=\left(\begin{array}{c}
1 \\
2 \\
7 \\
-5
\end{array}\right) \times\left(\begin{array}{cccc}
-2 & 2 & 0 & -3
\end{array}\right)=\left(\begin{array}{cccc}
-2 & 2 & 0 & -3 \\
-4 & 4 & 0 & -6 \\
-14 & 14 & 0 & -21 \\
10 & -10 & 0 & 15
\end{array}\right)
$$

In fact, we can write any rank- 1 matrix as $u v^{T}$ for suitable vectors u and v.

3.2 Rank-1 Update of a Matrix Inverse

Suppose we have a matrix M and we have computed its inverse M^{-1}. Now consider the matrix

$$
\tilde{M}:=M+u v^{T}
$$

for some rank-1 matrix $W=u v^{T}$. Then there is an exact formula for \tilde{M}^{-1} based on the data M^{-1}, u, and v, which is called the Sherman-Morrison formula:
Property. \tilde{M} is invertible if and only if $v^{T} M^{-1} u \neq-1$, in which case

$$
\begin{equation*}
\tilde{M}^{-1}=\left[I-\frac{M^{-1} u v^{T}}{1+v^{T} M^{-1} u}\right] M^{-1} . \tag{3}
\end{equation*}
$$

Proof: Let

$$
Q=\left[I-\frac{M^{-1} u v^{T}}{1+v^{T} M^{-1} u}\right] M^{-1} .
$$

Then it suffices to show that $\tilde{M} Q=I$, which we now compute:

$$
\begin{aligned}
& \tilde{M} Q=\left[M+u v^{T}\right] \times\left[I-\frac{M^{-1} u v^{T}}{1+v^{T} M^{-1} u}\right] M^{-1} \\
& =\left[M+u v^{T}\right] \times\left[M^{-1}-\frac{M^{-1} u v^{T} M^{-1}}{1+v^{T} M^{-1} u}\right] \\
& =I+u v^{T} M^{-1}-\frac{u v^{T} M^{-1}}{1+v^{T} M^{-1} u}-\frac{u v^{T} M^{-1} v^{T} M^{-1}}{1+v^{T} M^{-1} u} \\
& =I+u v^{T} M^{-1}\left(1-\frac{1}{1+v^{T} M^{-1} u}-\frac{v^{T} M^{-1} u}{1+v^{T} M^{-1} u}\right) \\
& =I
\end{aligned}
$$

q.e.d.

3.3 Solving Equations with \tilde{M} using M^{-1}

Suppose that we have a convenient way to solve equations of the form $M x=$ b (for example, if we have computed an $L U$ factorization of M), but that we want to solve the equation system:

$$
\tilde{M} x=b .
$$

Using (3), we can write:

$$
x=\tilde{M}^{-1} b=\left[I-\frac{M^{-1} u v^{T}}{1+v^{T} M^{-1} u}\right] M^{-1} b .
$$

Now notice in this expression that we only need to work with M^{-1}, which we presume that we can do conveniently. In fact, if we let

$$
x^{1}=M^{-1} b \text { and } x^{2}=M^{-1} u,
$$

we can write the above as:
$x=\tilde{M}^{-1} b=\left[I-\frac{M^{-1} u v^{T}}{1+v^{T} M^{-1} u}\right] M^{-1} b=\left[I-\frac{x^{2} v^{T}}{1+v^{T} x^{2}}\right] x^{1}=x^{1}-\frac{v^{T} x^{1}}{1+v^{T} x^{2}} x^{2}$.

Therefore we have the following procedure for solving $\tilde{M} x=b$:

- Solve the system $M x^{1}=b$ for x^{1}
- Solve the system $M x^{2}=u$ for x^{2}
- Compute $x=x^{1}-\frac{v^{T} x^{1}}{1+v^{T} x^{2}} x^{2}$.

3.4 Computational Efficiency

The number of operations needed to form an $L U$ factorization of an $n \times n$ matrix M is on the order of n^{3}. Once the factorization has been computed, the number of operations it takes to then solve $M x=b$ using back substitution by solving $L v=b$ and $U x=v$ is on the order of n^{2}. If we solve $\tilde{M} x=b$ by factorizing \tilde{M} and then doing back substitution, the number of operations needed would therefore be $n^{3}+n^{2}$. However, if we use the above rank- 1 update method, the number of operations is n^{2} operations for each solve step and then $3 n$ operations for the final step, yielding a total operation count of $2 n^{2}+3 n$. This is vastly superior to $n^{3}+n^{2}$ for large n.

3.5 Application to the Simplex Method

Returning to the simplex method, recall that we presume that the current basis is:

$$
B:=\left[A_{1}|\ldots| A_{j-1}\left|A_{j}\right| A_{j+1}|\ldots| A_{m}\right]
$$

at one iteration, and at the next iteration we have a new basis matrix \tilde{B} of the form:

$$
\tilde{B}:=\left[A_{1}|\ldots| A_{j-1}\left|A_{k}\right| A_{j+1}|\ldots| A_{m}\right]
$$

Now notice that we can write:

$$
\tilde{B}=B+\left(A_{k}-A_{j}\right) \times\left(e^{j}\right)^{T}
$$

where e^{j} is the $j^{\text {th }}$ unit vector (e^{j} has a 1 in the $j^{\text {th }}$ component and a 0 in every other component). This means that \tilde{B} is a rank- 1 update of B with

$$
\begin{equation*}
u=\left(A_{k}-A_{j}\right) \quad \text { and } \quad v=\left(e^{j}\right) \tag{4}
\end{equation*}
$$

If we wish to solve the equation system $\tilde{B} x=r_{1}$, we can apply the method of the previous section, substituting $M=B, b=r_{1}, u=\left(A_{k}-A_{j}\right)$ and $v=\left(e^{j}\right)$. This works out to:

- Solve the system $B x^{1}=r_{1}$ for x^{1}
- Solve the system $B x^{2}=A_{k}-A_{j}$ for x^{2}
- Compute $x=x^{1}-\frac{\left(e^{j}\right)^{T} x^{1}}{1+\left(e^{j}\right)^{T} x^{2}} x^{2}$.

This is fine if we want to update the basis only once. In practice, however, we would like to systematically apply this method over a sequence of iterations of the simplex method. Before we indicate how this can be done, we need to do a bit more algebraic manipulation. Notice that using (3) and (4) we can write:

$$
\begin{aligned}
& \tilde{B}^{-1}=\left[I-\frac{B^{-1} u v^{T}}{1+v^{T} B^{-1} u}\right] B^{-1} \\
& =\left[I-\frac{B^{-1}\left(A_{k}-A_{j}\right)\left(e^{j}\right)^{T}}{1+\left(e^{j}\right)^{T} B^{-1}\left(A_{k}-A_{j}\right)}\right] B^{-1} .
\end{aligned}
$$

Now notice that because $A_{j}=B e^{j}$, it follows that $B^{-1} A_{j}=e^{j}$, and substituting this in the above yields:

$$
\begin{aligned}
& \tilde{B}^{-1}=\left[I-\frac{\left(B^{-1} A_{k}-e^{j}\right)\left(e^{j}\right)^{T}}{\left(e^{j}\right)^{T} B^{-1} A_{k}}\right] B^{-1} \\
& =\tilde{E} B^{-1}
\end{aligned}
$$

where

$$
\tilde{E}=\left[I-\frac{\left(B^{-1} A_{k}-e^{j}\right)\left(e^{j}\right)^{T}}{\left(e^{j}\right)^{T} B^{-1} A_{k}}\right]
$$

Furthermore, if we let \tilde{w} be the solution of the system $B \tilde{w}=A_{k}$, that is, $\tilde{w}=B^{-1} A_{k}$, then we can write \tilde{E} as

$$
\tilde{E}=\left[I-\frac{\left(\tilde{w}-e^{j}\right)\left(e^{j}\right)^{T}}{\left(e^{j}\right)^{T} \tilde{w}}\right]
$$

We state this formally as:

Property A. Suppose that the basis \tilde{B} is obtained by replacing the $j^{\text {th }}$ column of B with the new column A_{k}. Let \tilde{w} be the solution of the system $B \tilde{w}=A_{k}$ and define:

$$
\tilde{E}=\left[I-\frac{\left(\tilde{w}-e^{j}\right)\left(e^{j}\right)^{T}}{\left(e^{j}\right)^{T} \tilde{w}}\right]
$$

Then

$$
\begin{equation*}
\tilde{B}^{-1}=\tilde{E} B^{-1} . \tag{5}
\end{equation*}
$$

Once we have computed \tilde{w} we can easily form \tilde{E}. And then we have from above:

$$
x=\tilde{B}^{-1} r_{1}=\tilde{E} B^{-1} r_{1} .
$$

Using this we can construct a slightly different (but equivalent) method for solving $\tilde{B} x=r_{1}$:

- Solve the system $B \tilde{w}=A_{k}$ for \tilde{w}
- Form and save the matrix $\tilde{E}=\left[I-\frac{\left(\tilde{w}-e^{j}\right)\left(e^{j}\right)^{T}}{\left(e^{j}\right)^{T} \tilde{w}}\right]$
- Solve the system $B x^{1}=r_{1}$ for x^{1}
- Compute $x=\tilde{E} x^{1}$.

Notice that

$$
\tilde{E}=\left(\begin{array}{cccccc}
1 & & & \tilde{c}_{1} & & \\
& 1 & & \tilde{c}_{2} & & \\
& & \ddots & \vdots & & \\
& & & \tilde{c}_{j} & & \\
& & & \vdots & \ddots & \\
& & & \tilde{c}_{m} & & 1
\end{array}\right)
$$

where

$$
\tilde{c}=\frac{\left(\tilde{w}-e^{j}\right)}{\left(e^{j}\right)^{T} \tilde{w}}
$$

\tilde{E} is an elementary matrix, which is matrix that differs from the identity matrix in only one column or row. To construct \tilde{E} we only need to solve
$B \tilde{w}=A_{k}$, and that the information needed to create \tilde{E} is the n-vector \tilde{w} and the index j. Therefore the amount of memory needed to store \tilde{E} is just $n+1$ numbers. Also the computation of $\tilde{E} x^{1}$ involves only $2 n$ operations if the code is written to take advantage of the very simple special structure of \tilde{E}.

4 Implementation over a Sequence of Iterations

Now let us look at the third iteration. Let $\tilde{\tilde{B}}$ be the basis at this iteration. We have:

$$
\tilde{B}:=\left[A_{1}|\ldots| A_{i-1}\left|A_{i}\right| A_{i+1}|\ldots| A_{m}\right]
$$

at the second iteration, and let us suppose that at the third iteration we replace the column A_{i} with the column A_{l}, and so $\tilde{\tilde{B}}$ is of the form:

$$
\tilde{\tilde{B}}:=\left[A_{1}|\ldots| A_{i-1}\left|A_{l}\right| A_{i+1}|\ldots| A_{m}\right]
$$

Then using Property A above, let $\tilde{\tilde{w}}$ be the solution of the system $\tilde{B} \tilde{\tilde{w}}=A_{i}$. Then

$$
\begin{equation*}
\tilde{\tilde{B}}^{-1}=\tilde{\tilde{E}} \tilde{B}^{-1} \tag{6}
\end{equation*}
$$

where

$$
\tilde{\tilde{E}}=\left[I-\frac{\left(\tilde{\tilde{w}}-e^{i}\right)\left(e^{i}\right)^{T}}{\left(e^{i}\right)^{T} \tilde{\tilde{w}}}\right] .
$$

It then follows that $\tilde{\tilde{B}}^{-1}=\tilde{\tilde{E}} \tilde{B}^{-1}=\tilde{\tilde{E}} \tilde{E} B^{-1}$, and so:

$$
\begin{equation*}
\tilde{\tilde{B}}^{-1}=\tilde{\tilde{E}} \tilde{E} B^{-1} \tag{7}
\end{equation*}
$$

Therefore we can easily solve equations involving $\tilde{\tilde{B}}$ by forming \tilde{E} and $\tilde{\tilde{E}}$ and working with the original $L U$ factorization of B.

This idea can be extended over a large sequence of pivots. We start with a basis B and we compute and store an $L U$ factorization of B. Let our sequence of bases be $B_{0}=B, B_{1}, \ldots, B_{k}$ and suppose that we have computed matrices E_{1}, \ldots, E_{k} with the property that

$$
\left(B_{l}\right)^{-1}=E_{l} E_{l-1} \cdots E_{1} B^{-1} \quad, l=1, \ldots, k .
$$

Then to work with the next basis inverse B_{k+1} we compute a new matrix E_{k+1} and we write:

$$
\left(B_{k+1}\right)^{-1}=E_{k+1} E_{k} \cdots E_{1} B^{-1} .
$$

This method of working with the basis inverse over a sequence of iterations eventually degrades due to accumulated roundoff error. In most simplex codes this method is used for $K=50$ iterations in a row, and then the next basis is completely re-factorized from scratch. Then the process continues for another K iterations, etc.

5 Homework Exercise

1. In Section 3.2 we considered how to compute a solution x of the equation $\tilde{M} x=b$ where $\tilde{M}=M+u v^{T}$ and we have on hand an $L U$ factorization of M. Now suppose instead that we wish to compute a solution p of the equation $p^{T} \tilde{M}=c^{T}$ for some RHS vector c. Using the ideas in Section 3.2, develop an efficient procedure for computing p by working only with an $L U$ factorization of M.
2. In Section 3.5 we considered how to compute a solution x of the equation $\tilde{B} x=r_{1}$ where \tilde{B} differs from B by one column, and we have on hand an $L U$ factorization of B. Now suppose instead that we wish to compute a solution p of the equation $p^{T} \tilde{B}=r_{2}^{T}$ for some vector r_{2}. Using the ideas in Section 3.5, develop an efficient procedure for computing p by working only with an $L U$ factorization of B.
