
Working with the Basis Inverse over a Sequence of
Iterations

Robert M. Freund

February, 2004

c©2004 Massachusetts Institute of Technology.

1

[] ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

1 Equations Involving the Basis Matrix

At each iteration of the simplex method, we have a basis consisting of an
index of variables:

B(1), . . . , B(m) ,

from which we form the basis matrix B by collecting the columns AB(1), . . . , AB(m)

of A into a matrix:

.B := AB(1) ∣ AB(2)∣ . . . ∣ AB(m−1) ∣ AB(m)

In order to execute the simplex method at each iteration, we need to be
able to compute:

T T x = B−1 r1 and/or p = r2 B
−1 , (1)

for iteration-specific vectors r1 and r2, which is to say that we need to solve
equation systems of the type:

TBx = r1 and/or p T B = r2 (2)

for x and p.

2 LU Factorization

One way to solve (2) is to factor B into the product of a lower and upper
triangular matrix L, U :

B = LU ,

and then compute x and/or p as follows. To compute x, we solve the fol-
lowing two systems by back substitution:

• First solve Lv = r1 for v

• Then solve Ux = v for x.

2

To compute p, we solve the following two systems by back substitution:

T• First solve uT U = r2 for u

• Then solve pT L = uT for p.

It is straightforward to verify that these procedures yield x and p that
satisfy (2). If we compute according to these procedures, then:

TBx = LUx = Lv = r1 and p T B = p T LU = u T U = r2 .

3 Updating the Basis and its Inverse

As the simplex method moves from one iteration to the next, the basis
matrix B changes by one column. Without loss of generality, assume that
the columns of A have been re-ordered so that

B := [A1 | . . . | Aj−1 | Aj | Aj+1 | . . . | Am]

at one iteration. At the next iteration we have a new basis matrix B̃ of the
form:

B̃ := [A1 | . . . | Aj−1 | Ak | Aj+1 | . . . | Am] .

Here we see that column Aj has been replaced by column Ak in the new
basis.

Assume that at the previous iteration we have B and we have computed
an LU factorization of B that allows us to solve equations involving B−1. At
the current iteration, we now have B̃ and we would like to solve equations
involving B̃−1 . Although one might think that we might have to compute

˜an LU factorization of B, that is not the case. Herein we describe how
the linear algebra of working with B̃−1 is computed in practice. Before we
describe the method, we first need to digress a bit to discuss rank-1 matrices
and rank-1 updates of the inverse of a matrix.

3

[]

3.1 Rank-1 Matrices

Consider the following matrix:
 −2 2 0 −3 −4 4 0 −6 W = −14 14 0 −21

.

10 −10 0 15

W is an example of rank-1 matrix. All rows are linearly dependent and all
columns are linearly dependent. Now define:

 1
 2

T u = and v = (−2 2 0 −3) . 7

−5

If we think of u and v as n × 1 matrices, then notice that it makes sense
to write: 1 −2 2 0 −3

W = uv T =

2
7

 × (−2 2 0 −3) =

−4
−14

4
14

0
0

−6
−21

 .

−5 10 −10 0 15

In fact, we can write any rank-1 matrix as uvT for suitable vectors u and v.

3.2 Rank-1 Update of a Matrix Inverse

Suppose we have a matrix M and we have computed its inverse M −1. Now
consider the matrix

M̃ := M + uv T

M −1for some rank-1 matrix W = uvT . Then there is an exact formula for ˜
based on the data M −1, u, and v, which is called the Sherman-Morrison
formula:

˜ T M −1Property. M is invertible if and only if v u �= −1, in which case

M −1 uv˜ = I −
M −1 T

M −1 . (3)
1 + vT M −1u

4

[] []

[] []

()

[]

[] []

Proof: Let []
M −1 Tuv

Q = I − M −1 .
1 + vT M −1u

˜Then it suffices to show that MQ = I, which we now compute:

˜ uvMQ = M + uvT × I − M −1 T
M −1

T M −11+v u

M −1 − M −1uvT M −1
= M + uvT × T M −11+v u

= I + uvT M −1 − uvT M −1 − uvT M −1uvT M −1

T M −1 T M −11+v u 1+v u

1= I + uvT M −1 1 − T M −1 − vT M −1u
T M −11+v u 1+v u

= I

q.e.d.

˜3.3 Solving Equations with M using M−1

Suppose that we have a convenient way to solve equations of the form Mx =
b (for example, if we have computed an LU factorization of M), but that
we want to solve the equation system:

M̃x = b .

Using (3), we can write:

˜ M −1 T

x = M −1b = I −
uv

M −1b .
1 + vT M −1u

Now notice in this expression that we only need to work with M −1, which
we presume that we can do conveniently. In fact, if we let

2 x 1 = M −1b and x = M −1 u ,

we can write the above as:

˜ M −1 T 2 T T 1
1 2 x = M −1b = I −

uv
M −1b = I −

x v
x = x 1−

v x
x .

T x2 T x21 + vT M −1u 1 + v 1 + v

5

()

˜Therefore we have the following procedure for solving Mx = b:

1• Solve the system Mx1 = b for x

2• Solve the system Mx2 = u for x

v x 2• Compute x = x1 −
T 1

.
1+vT x2 x

3.4 Computational Efficiency

The number of operations needed to form an LU factorization of an n × n
3matrix M is on the order of n . Once the factorization has been computed,

the number of operations it takes to then solve Mx = b using back substi-
tution by solving Lv = b and Ux = v is on the order of n2. If we solve
˜ ˜Mx = b by factorizing M and then doing back substitution, the number

2of operations needed would therefore be n3 + n . However, if we use the
above rank-1 update method, the number of operations is n2 operations for
each solve step and then 3n operations for the final step, yielding a total
operation count of 2n2 + 3n. This is vastly superior to n3 + n2 for large n.

3.5 Application to the Simplex Method

Returning to the simplex method, recall that we presume that the current
basis is:

B := [A1 | . . . | Aj−1 | Aj | Aj+1 | . . . | Am]

at one iteration, and at the next iteration we have a new basis matrix B̃ of
the form:

B̃ := [A1 | . . . | Aj−1 | Ak | Aj+1 | . . . | Am] .

Now notice that we can write:

˜
()T

B = B + (Ak − Aj) × ej ,

where ej is the jth unit vector (ej has a 1 in the jth component and a 0 in
every other component). This means that B̃ is a rank-1 update of B with

ju = (Ak − Aj) and v = e . (4)

6

()

[]

[]

[]

[] () (

[] () (

If we wish to solve the equation system B̃x = r1, we can apply the method
of the previous section, substituting M = B, b = r1, u = (Ak − Aj) and
v = ej . This works out to:

1• Solve the system Bx1 = r1 for x

2• Solve the system Bx2 = Ak − Aj for x

1(ej)T x 2• Compute x = x1 −
1+(ej)T x2 x .

This is fine if we want to update the basis only once. In practice, how-
ever, we would like to systematically apply this method over a sequence of
iterations of the simplex method. Before we indicate how this can be done,
we need to do a bit more algebraic manipulation. Notice that using (3) and
(4) we can write:

˜ uvB−1 = I − B−
T

1

B−
T

1 B−1
1+v u

B−1(Ak−Aj)(ej)T

B−1= I −
1+(ej)T B−1(Ak−Aj)

.

Now notice that because Aj = Bej , it follows that B−1Aj = ej , and substi-
tuting this in the above yields:

B−1 I − (
B−1Ak−ej)(ej)T

B−1˜ =
(ej)T B−1Ak

˜= EB−1

where
ej)T

˜ B−1Ak − ej

E = I − .
(ej)T B−1Ak

w be the solution of the system B ˜Furthermore, if we let ˜ w = Ak , that is,
˜ E asw = B−1Ak , then we can write ˜

ej)T˜˜ w − ej

E = I − .
(ej)T w̃

We state this formally as:

7

[] () (

[]

˜Property A. Suppose that the basis B is obtained by replacing the jth

column of B with the new column Ak . Let ̃w be the solution of the system
B w̃ = Ak and define:

ej)T˜˜ w − ej

E = I − .
(ej)T w̃

Then
B−1 ˜˜ = EB−1 . (5)

Once we have computed w we can easily form E. And then we have ˜ ˜
from above:

˜ ˜x = B−1 r1 = EB−1 r1 .

Using this we can construct a slightly different (but equivalent) method for
solving B̃x = r1:

• Solve the system B ˜ ww = Ak for ˜

w−ej)(ej)T

• Form and save the matrix ˜ I − (̃E =
(ej)T w̃

1• Solve the system Bx1 = r1 for x

˜• Compute x = Ex1 .

Notice that

 1 c̃1 1 c̃2 ˜ E = c̃j
c̃m 1

where (
w − ej)
˜

c̃ = .
(ej)T w̃

Ẽ is an elementary matrix, which is matrix that differs from the identity
matrix in only one column or row. To construct Ẽ we only need to solve

8

(

w = Ak , and that the information needed to create ˜ ˜B ˜ E is the n-vector w
and the index j. Therefore the amount of memory needed to store Ẽ is just
n + 1 numbers. Also the computation of Ẽx1 involves only 2n operations if
the code is written to take advantage of the very simple special structure of
Ẽ.

4 Implementation over a Sequence of Iterations

Now let us look at the third iteration. Let ˜̃B be the basis at this iteration.
We have:

B̃ := [A1 | . . . | Ai−1 | Ai | Ai+1 | . . . | Am]

at the second iteration, and let us suppose that at the third iteration we

replace the column Ai with the column Al, and so ̃B̃ is of the form:

˜̃B := [A1 | . . . | Ai−1 | Al | Ai+1 | . . . | Am] .

Then using Property A above, let ˜̃w be the solution of the system
˜w = Ai. ThenB ˜̃

−1 ˜̃B−1˜̃B = E ˜ (6)

where ()
˜̃w − ei ei

)T
˜̃ E = I −

˜̃
.

(ei)T w

−1 ˜̃B−1B = E ˜ = E ˜It then follows that ˜̃ ˜̃EB−1, and so:

−1
B = E ˜˜̃ ˜̃EB−1 . (7)

B by forming E and ˜̃Therefore we can easily solve equations involving ˜̃ ˜ E
and working with the original LU factorization of B.

This idea can be extended over a large sequence of pivots. We start
with a basis B and we compute and store an LU factorization of B. Let
our sequence of bases be B0 = B, B1, . . . , Bk and suppose that we have
computed matrices E1, . . . , Ek with the property that

(Bl)−1 = ElEl−1 · · ·E1B
−1 , l = 1, . . . , k .

9

Then to work with the next basis inverse Bk+1 we compute a new matrix
Ek+1 and we write:

(Bk+1)−1 = Ek+1Ek · · ·E1B
−1 .

This method of working with the basis inverse over a sequence of it-
erations eventually degrades due to accumulated roundoff error. In most
simplex codes this method is used for K = 50 iterations in a row, and then
the next basis is completely re-factorized from scratch. Then the process
continues for another K iterations, etc.

5 Homework Exercise

1. In Section 3.2 we considered how to compute a solution x of the equa-
˜ ˜tion Mx = b where M = M + uvT and we have on hand an LU

factorization of M . Now suppose instead that we wish to compute a
˜solution p of the equation pT M = cT for some RHS vector c. Using

the ideas in Section 3.2, develop an efficient procedure for computing
p by working only with an LU factorization of M .

2. In Section 3.5 we considered how to compute a solution x of the equa-
tion ˜ B differs from B by one column, and we have on Bx = r1 where ˜
hand an LU factorization of B. Now suppose instead that we wish

Tto compute a solution p of the equation pT B̃ = r2 for some vector
r2. Using the ideas in Section 3.5, develop an efficient procedure for
computing p by working only with an LU factorization of B.

10

