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1 Equations Involving the Basis Matrix 

At each iteration of the simplex method, we have a basis consisting of an 
index of variables: 

B(1), . . . , B(m) , 

from which we form the basis matrix B by collecting the columns AB(1), . . . , AB(m) 

of A into a matrix: 

.B := AB(1) ∣ AB(2)∣ . . . ∣ AB(m−1) ∣ AB(m) 

In order to execute the simplex method at each iteration, we need to be 
able to compute: 

T T x = B−1 r1 and/or p = r2 B
−1 , (1) 

for iteration-specific vectors r1 and r2, which is to say that we need to solve 
equation systems of the type: 

TBx = r1 and/or p T B = r2 (2) 

for x and p. 

2 LU Factorization 

One way to solve (2) is to factor B into the product of a lower and upper 
triangular matrix L, U : 

B = LU , 

and then compute x and/or p as follows. To compute x, we solve the fol-
lowing two systems by back substitution: 

• First solve Lv = r1 for v 

• Then solve Ux  = v for x. 
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To compute p, we solve the following two systems by back substitution: 

T• First solve uT U = r2 for u 

• Then solve pT L = uT for p. 

It is straightforward to verify that these procedures yield x and p that 
satisfy (2). If we compute according to these procedures, then: 

TBx = LUx = Lv = r1 and p T B = p T LU = u T U = r2 . 

3 Updating the Basis and its Inverse 

As the simplex method moves from one iteration to the next, the basis 
matrix B changes by one column. Without loss of generality, assume that 
the columns of A have been re-ordered so that 

B := [ A1 | . . . | Aj−1 | Aj | Aj+1 | . . .  | Am ] 

at one iteration. At the next iteration we have a new basis matrix B̃ of the 
form: 

B̃ := [ A1 | . . . | Aj−1 | Ak | Aj+1 | . . .  | Am ] . 

Here we see that column Aj has been replaced by column Ak in the new 
basis. 

Assume that at the previous iteration we have B and we have computed 
an LU factorization of B that allows us to solve equations involving B−1. At  
the current iteration, we now have B̃ and we would like to solve equations 
involving B̃−1 . Although one might think that we might have to compute 

˜an LU factorization of B, that is not the case. Herein we describe how 
the linear algebra of working with B̃−1 is computed in practice. Before we 
describe the method, we first need to digress a bit to discuss rank-1 matrices 
and rank-1 updates of the inverse of a matrix. 
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3.1 Rank-1 Matrices 

Consider the following matrix: 
 −2 2 0 −3  −4 4 0 −6   W =  −14 14 0 −21 

. 

10 −10 0 15 

W is an example of rank-1 matrix. All rows are linearly dependent and all 
columns are linearly dependent. Now define: 

 1
 2 

T u =   and v = (  −2 2 0  −3 )  .  7  

−5 

If we think of u and v as n × 1 matrices, then notice that it makes sense 
to write:  1   −2 2 0 −3  

W = uv T = 
   

2 
7 

   × ( −2 2 0  −3 )  =  
   

−4 
−14 

4 
14 

0 
0 

−6 
−21 

   . 

−5 10 −10 0 15 

In fact, we can write any rank-1 matrix as uvT for suitable vectors u and v. 

3.2 Rank-1 Update of a Matrix Inverse 

Suppose we have a matrix M and we have computed its inverse M −1. Now  
consider the matrix 

M̃ := M + uv T 

M −1for some rank-1 matrix W = uvT . Then there is an exact formula for ˜
based on the data M −1, u, and  v, which is called the Sherman-Morrison 
formula: 

˜ T M −1Property. M is invertible if and only if v u �= −1, in which case 

M −1 uv˜ = I − 
M −1 T 

M −1 . (3)
1 +  vT M −1u 
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Proof: Let [ ] 
M −1 Tuv

Q = I − M −1 .
1 +  vT M −1u 

˜Then it suffices to show that MQ  = I, which we now compute: 

˜ uvMQ  = M + uvT × I − M −1 T 
M −1 

T M −11+v u 

M −1 − M −1uvT M −1 
= M + uvT × T M −11+v u 

= I + uvT M −1 − uvT M −1 − uvT M −1uvT M −1 

T M −1 T M −11+v u 1+v u 

1= I + uvT M −1 1 − T M −1 − vT M −1u 
T M −11+v u 1+v u 

= I 

q.e.d. 

˜3.3 Solving Equations with M using M−1 

Suppose that we have a convenient way to solve equations of the form Mx  = 
b (for example, if we have computed an LU factorization of M ), but that 
we want to solve the equation system: 

M̃x  = b .  

Using (3), we can write: 

˜ M −1 T 

x = M −1b = I − 
uv

M −1b .
1 +  vT M −1u 

Now notice in this expression that we only need to work with M −1, which 
we presume that we can do conveniently. In fact, if we let 

2 x 1 = M −1b and x = M −1 u ,  

we can write the above as: 

˜ M −1 T 2 T T 1 
1 2 x = M −1b = I − 

uv
M −1b = I − 

x v
x = x 1− 

v x
x .

T x2 T x21 +  vT M −1u 1 +  v 1 +  v

5 



( ) 

˜Therefore we have the following procedure for solving Mx  = b: 

1• Solve the system Mx1 = b for x

2• Solve the system Mx2 = u for x

v x 2• Compute x = x1 − 
T 1 

.
1+vT x2 x

3.4 Computational Efficiency 

The number of operations needed to form an LU factorization of an n × n 
3matrix M is on the order of n . Once the factorization has been computed, 

the number of operations it takes to then solve Mx  = b using back substi-
tution by solving Lv = b and Ux  = v is on the order of n2. If  we  solve  
˜ ˜Mx  = b by factorizing M and then doing back substitution, the number 

2of operations needed would therefore be n3 + n . However, if we use the 
above rank-1 update method, the number of operations is n2 operations for 
each solve step and then 3n operations for the final step, yielding a total 
operation count of 2n2 + 3n. This is vastly superior to n3 + n2 for large n. 

3.5 Application to the Simplex Method 

Returning to the simplex method, recall that we presume that the current 
basis is: 

B := [ A1 | . . . | Aj−1 | Aj | Aj+1 | . . .  | Am ] 

at one iteration, and at the next iteration we have a new basis matrix B̃ of 
the form: 

B̃ := [ A1 | . . . | Aj−1 | Ak | Aj+1 | . . .  | Am ] . 

Now notice that we can write: 

˜
( )T 

B = B + (Ak − Aj ) × ej , 

where ej is the jth unit vector (ej has a 1 in the jth component and a 0 in 
every other component). This means that B̃ is a rank-1 update of B with 

ju = (Ak − Aj ) and  v = e . (4) 
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If we wish to solve the equation system B̃x = r1, we can apply the method 
of the previous section, substituting M = B, b = r1, u = (Ak − Aj ) and  
v = ej . This works out to: 

1• Solve the system Bx1 = r1 for x

2• Solve the system Bx2 = Ak − Aj for x

1(ej)T x 2• Compute x = x1 − 
1+(ej)T x2 x . 

This is fine if we want to update the basis only once. In practice, how-
ever, we would like to systematically apply this method over a sequence of 
iterations of the simplex method. Before we indicate how this can be done, 
we need to do a bit more algebraic manipulation. Notice that using (3) and 
(4) we can write: 

˜ uvB−1 = I − B−
T 

1

B−
T 

1 B−1 
1+v u 

B−1(Ak−Aj)(ej)T 

B−1= I − 
1+(ej)T B−1(Ak−Aj) 

. 

Now notice that because Aj = Bej , it follows that B−1Aj = ej , and substi-
tuting this in the above yields: 

B−1 I − (
B−1Ak−ej)(ej)T 

B−1˜ = 
(ej)T B−1Ak 

˜= EB−1 

where 
ej )T 

˜ B−1Ak − ej 

E = I − . 
(ej )T B−1Ak 

w be the solution of the system B ˜Furthermore, if we let ˜ w = Ak , that is, 
˜ E asw = B−1Ak , then we can write ˜

ej )T˜˜ w − ej 

E = I − . 
(ej )T w̃

We state this formally as: 
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˜Property A. Suppose that the basis B is obtained by replacing the jth 

column of B with the new column Ak . Let  ̃w be the solution of the system 
B w̃ = Ak and define: 

ej )T˜˜ w − ej 

E = I − . 
(ej )T w̃

Then 
B−1 ˜˜ = EB−1 . (5) 

Once we have computed w we can easily form E. And then we have ˜ ˜
from above: 

˜ ˜x = B−1 r1 = EB−1 r1 . 

Using this we can construct a slightly different (but equivalent) method for 
solving B̃x = r1: 

• Solve the system B ˜ ww = Ak for ˜

w−ej)(ej)T 

• Form and save the matrix ˜ I − ( ̃E = 
(ej)T w̃

1• Solve the system Bx1 = r1 for x

˜• Compute x = Ex1 . 

Notice that 

 1 c̃1  1 c̃2     . . . .  . . ˜  E =  c̃j   . .  . .  . . 
c̃m 1 

where ( 
w − ej ) 
˜

c̃ = . 
(ej )T w̃

Ẽ is an elementary matrix, which is matrix that differs from the identity 
matrix in only one column or row. To construct Ẽ we only need to solve 
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w = Ak , and that the information needed to create ˜ ˜B ˜ E is the n-vector w 
and the index j. Therefore the amount of memory needed to store Ẽ is just 
n + 1 numbers. Also the computation of Ẽx1 involves only 2n operations if 
the code is written to take advantage of the very simple special structure of 
Ẽ. 

4 Implementation over a Sequence of Iterations 

Now let us look at the third iteration. Let ˜̃B be the basis at this iteration. 
We have: 

B̃ := [ A1 | . . . | Ai−1 | Ai | Ai+1 | . . .  | Am ] 

at the second iteration, and let us suppose that at the third iteration we 

replace the column Ai with the column Al, and  so  ̃B̃ is of the form: 

˜̃B := [ A1 | . . . | Ai−1 | Al | Ai+1 | . . .  | Am ] . 

Then using Property A above, let ˜̃w be the solution of the system 
˜w = Ai. ThenB ˜̃

−1 ˜̃B−1˜̃B = E ˜ (6) 

where ( )  
˜̃w − ei ei

)T 
˜̃ E = I − 

˜̃
. 

(ei)T w 

−1 ˜̃B−1B = E ˜ = E ˜It then follows that ˜̃ ˜̃EB−1, and  so:  

−1 
B = E ˜˜̃ ˜̃EB−1 . (7) 

B by forming E and ˜̃Therefore we can easily solve equations involving ˜̃ ˜ E 
and working with the original LU factorization of B. 

This idea can be extended over a large sequence of pivots. We start 
with a basis B and we compute and store an LU factorization of B. Let  
our sequence of bases be B0 = B, B1, . . . , Bk and suppose that we have 
computed matrices E1, . . . , Ek with the property that 

(Bl)−1 = ElEl−1 · · ·E1B
−1 , l  = 1, . . . , k  .  
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Then to work with the next basis inverse Bk+1 we compute a new matrix 
Ek+1 and we write: 

(Bk+1)−1 = Ek+1Ek · · ·E1B
−1 . 

This method of working with the basis inverse over a sequence of it-
erations eventually degrades due to accumulated roundoff error. In most 
simplex codes this method is used for K = 50 iterations in a row, and then 
the next basis is completely re-factorized from scratch. Then the process 
continues for another K iterations, etc. 

5 Homework Exercise 

1. In Section 3.2 we considered how to compute a solution x of the equa-
˜ ˜tion Mx  = b where M = M + uvT and we have on hand an  LU 

factorization of M . Now suppose instead that we wish to compute a 
˜solution p of the equation pT M = cT for some RHS vector c. Using  

the ideas in Section 3.2, develop an efficient procedure for computing 
p by working only with an LU factorization of M . 

2. In Section 3.5 we considered how to compute a solution x of the equa-
tion ˜ B differs from B by one column, and we have on Bx = r1 where ˜
hand an LU factorization of B. Now suppose instead that we wish 

Tto compute a solution p of the equation pT B̃ = r2 for some vector  
r2. Using the ideas in Section 3.5, develop an efficient procedure for 
computing p by working only with an LU factorization of B. 
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