
Issues in Non-Convex Optimization

Robert M. Freund

with assistance from Brian W. Anthony

April 22, 2004

c©2004 Massachusetts Institute of Technology.

1

1 Outline

• General Nonlinear Optimization Problem

• Optimality Conditions for NLP

• Sequential Quadratic Programming (SQP) Method

• LOQO: Combining Interior-Point Methods and SQP

• Practical Issues in Solving NLP Problems

2 General Nonlinear Optimization Problem

NLP: minimizex f (x)

s.t. gi(x) = 0, i ∈ E

gi(x) ≤ 0, i ∈ I

nx ∈ � ,

n � n �where f (x) : � → �, gi(x) : � → �, i ∈ E ∪I, E denotes the indices of the
equality constraints, and I denotes the indices of the inequality constraints.

2.1 General Comments

Non-convex optimization problems arise in just about every economic and
scientific domain:

• radiation therapy

• engineering product design

• economics: Nash equilibria

• finance: options pricing

2

• industrial engineering: traffic equilibria, supply chain management

• many other domains as well

Non-convex optimization is hard. Since x − x2 = 0 if and only if
x ∈ {0, 1}, we can formulate binary integer optimization as the following
nonlinear optimization instance:

TBIP: minimizex c x

s.t. Ax ≤ b

2 = 0, j = 1, . . . , nxj − xj

nx ∈ �

2.2 Useful Definitions

The feasible region F of NLP is the set

F = {x | gi(x) = 0 for i ∈ E , gi(x) ≤ 0 for i ∈ I}

We have the following definitions of local/global, strict/non-strict min-
ima/maxima.

Definition 2.1 x ∈ F is a local minimum of NLP if there exists ε > 0 such¯

x) ≤ f(x) for all x ∈ B(¯
that f(¯ x, ε) ∩ F .

Definition 2.2 x ∈ F is a global minimum of NLP if f(¯¯ x) ≤ f(x) for all
x ∈ F .

Definition 2.3 x ∈ F is a strict local minimum of NLP if there exists ε > 0¯
x) < f(x) for all x ∈ B(¯ = ¯such that f(¯ x, ε) ∩ F , x 	 x.

Definition 2.4 x ∈ F is a strict global minimum of NLP if f(¯¯ x) < f(x)
for all x ∈ F , x 	 x.= ¯

3

∑ ∑

Definition 2.5 x ∈ F is a local maximum of NLP if there exists ε > 0¯

x) ≥ f(x) for all x ∈ B(¯
such that f(¯ x, ε) ∩ F .

Definition 2.6 x ∈ F is a global maximum of NLP if f(¯
¯ x) ≥ f(x) for all
x ∈ F .

Definition 2.7 x ∈ F is a strict local maximum of NLP if there exists ¯
x) > f(x) for all x ∈ B(¯ = ¯ε > 0 such that f(¯ x, ε) ∩ F , x 	 x.

Definition 2.8 x ∈ F is a strict global maximum of NLP if f(¯¯ x) > f(x)
for all x ∈ F , x 	 x.= ¯

If x is feasible for NLP, we let I(x) denote the indices of the active
inequality constraints, namely:

I(x) := {i ∈ I | gi(x) = 0} .

3 Optimality Conditions for NLP

Theorem: Karush-Kuhn-Tucker Necessary Conditions. Suppose
that f(x) and gi(x), i ∈ E ∪ I, are all differentiable functions. Under mild
additional conditions, if x̄ is a local minimum of NLP, then there exists ȳ
for which

x) + ȳi∇gi(¯ x) = 0(i) ∇f(¯ x) + ȳi∇gi(¯
i∈E i∈I

(ii) gi(x̄) = 0, i ∈ E

(iii) gi(x̄) ≤ 0, i ∈ I

(iv) ¯
yi ≥ 0, i ∈ I

(v) ȳi · gi(x̄) = 0, i ∈ I .

q.e.d.

4

∑ ∑

∑ ∑

∑ ∑

[]

In the absence of convexity, a KKT point can be a global minimum, a
local minimum, a “saddlepoint”, or even a local or global maximum.

In order to develop sufficient conditions for a KKT point to be a local
minimum, we need to work with the Lagrangian function associated with
NLP, namely:

L(x, y) := f(x) + yigi(x) + yigi(x) .
i∈E i∈I

We write ∇2f(x) for the Hessian matrix of f(x) and we write

∇2 L(x, y)x,x

for the Hessian matrix of L(x, y) with respect to the x variables, namely:

∇2 yi∇2 yi∇2L(x, y) = ∇2f(x) + gi(x) + gi(x) . (1)x,x
i∈E i∈I

We also need to work with the “cone of tangents” K(x) of a feasible
point x, defined as:

K(x) := {d | ∇gi(x)T d = 0 for i ∈ E , ∇gi(x)T d ≤ 0 for i ∈ I(x)} .

Theorem: Karush-Kuhn-Tucker Sufficient Conditions. Suppose that
f(x) and gi(x), i ∈ E ∪I, are all twice-differentiable functions. Suppose that
(¯ y) satisfy the following conditions: x, ¯

x) + ȳi∇gi(¯ x) = 0(i) ∇f(¯ x) + ȳi∇gi(¯
i∈E i∈I

(ii) gi(x̄) = 0, i ∈ E

(iii) gi(x̄) ≤ 0, i ∈ I

(iv) ȳi ≥ 0, i ∈ I

(v) ȳi · gi(x̄) = 0, i ∈ I

(vi) dT ∇2 L(¯ y) d > 0 for d ∈ K(¯ = 0 .x, ¯ x), d 	x,x

5

Then x̄ is strict local minimum of NLP.
q.e.d.

3.1 Algorithm Issues

•	 It is rare that an algorithm for NLP will compute a global minimum.

•	 It is more usual for an algorithm to try to compute a local minimum,
or at least to try to compute a KKT point.

•	 Most algorithms will achieve these goals “in the limit”, in the sense
that they generate a sequence which would converge to such a point if
allowed to compute an infinite number of iterations.

Here is a quick overview of various types of algorithms that you have
learned about already:

•	 Gradient-type methods

–	 steepest descent

–	 subgradient method

–	 Frank-Wolfe (conditional gradient) method

–	 conjugate gradient and/or conjugate directions methods

These methods have low computational requirements at each iteration
(few computations and little memory per iteration), but the conver-
gence rates of these methods are at best linear, sometimes not even
linear.

•	 Newton-type methods

These methods have higher computational requirements at each iter-
ation (much more computations and more memory per iteration), but
convergence rates of these methods are usually locally quadratic.

•	 Interior-Point Methods

These methods are best suited for convex optimization, but perform
remarkably well on non-convex optimization as well. They usually
have local quadratic convergence rates.

6

∑ ∑

∑ ∑

4 Sequential Quadratic Programming (SQP) Method

We consider the general nonlinear optimization problem:

NLP: minimizex f (x)

s.t.	 gi(x) = 0, i ∈ E

gi(x) ≤ 0, i ∈ I

nx ∈ � .

The KKT conditions for this problem are that there exists (¯ y) for x, ¯
which the following hold:

x) + ȳi∇gi(¯ x) = 0(i) ∇f (¯ x) + ȳi∇gi(¯
i∈E i∈I

(ii)	 gi(x̄) = 0, i ∈ E

(iii)	 gi(x̄) ≤ 0, i ∈ I

(iv) ¯
yi ≥ 0, i ∈ I

(v)	 ȳi · gi(x̄) = 0, i ∈ I

The Lagrangian function associated with this problem is:

L(x, y) := f (x) + yigi(x) + yigi(x) .
i∈E i∈I

4.1	 First Key Idea of SQP Method: Solution of a Quadratic
Problem with Primal and Dual Information

Suppose we have current iterate values x of the primal variables x and¯
current iterate values ȳ of the multipliers y. We can build a quadratic
programming programming instance as follows. First, we use the second-
order (quadratic) Taylor approximation of the objective function f (x) at
x̄:

7

∑ ∑

[]

x + ∆x) ≈ f(¯ x)T (∆x) + 1 x)(∆x) . (2)f(¯ x) + ∇f(¯ 2 (∆x)T ∇2f(¯

Second, we can replace the nonlinear constraints by their local linear ap-
proximation, and we obtain:

x)T (∆x) + 1 x)(∆x)QP¯ : minimize∆x ∇f(¯ 2 (∆x)T ∇2f(¯x

x) + ∇gi(¯s.t. gi(¯ x)T (∆x) = 0, i ∈ E

x) + ∇gi(¯gi(¯ x)T (∆x) ≤ 0, i ∈ I
(3)

n∆x ∈ � .

However, this problem makes no use of the current values ȳ of the multipliers
y. Instead of using the Hessian of the original objective function ∇2f(x̄) in
forming the objective function of the QP, SQP methods use the Hessian of
the Lagrangian function:

∇2 L(¯ x) + ȳi∇2 gi(¯ x) .x, ȳ) = ∇2f(¯ x) + ȳi∇2 gi(¯x,x
i∈E i∈I

This yields the following slightly modified QP problem:

x,ȳ x)T (∆x) + 1
x,x x, ȳ) (∆x)QP¯ : minimize∆x ∇f(¯ 2 (∆x)T ∇2 L(¯

x) + ∇gi(¯s.t. gi(¯ x)T (∆x) = 0, i ∈ E

(4)
x) + ∇gi(¯gi(¯ x)T (∆x) ≤ 0, i ∈ I

n∆x ∈ � .

This problem is an “ordinary” quadratic problem (quadratic objective
function and linear constraints). We can solve this problem and obtain ∆x

8

∑ ∑

as the primal solution and ỹ as the dual multipliers on the constraints. We
then set:

∆y := ˜ y .y − ¯

In this way we use (¯ y) to create directions (∆x, ∆y).x, ¯

4.2	 Second Key Idea of SQP Method: Merit Function to
Measure Progress

Our current iterate is (¯ y) and we have computed the direction (∆x, ∆y)x, ¯
from the solution of the quadratic program QP¯ y . We compute the new x,¯

iterate values
x, ȳ) ← (¯ y) + ̄(¯ x, ¯ α(∆x, ∆y)

using a step-size ᾱ. The typical method for choosing the step-size is to use a
“merit function” that rewards improving the value of the original objective
function f (x) and penalizes for the extent of infeasibility. The most common
general merit function is of the form:

P (x) := f (x) + ρi|gi(x)| + ρi max{gi(x), 0} ,
i∈E i∈I

¯where the penalty parameters ρi, i ∈ E ∪ I, are user-specified. Thus α is
computed using:

α := arg min P (¯¯	 x + α∆x) .
α∈[0,1]

4.3	 General SQP Framework

The general algorithmic framework for the SQP method is as follows:

Step 1: Current Iterate. We have current iterate values x̄ of the
primal variables x and current iterate values ȳ of the multipliers y.

Step 2: Construct Quadratic Problem. Use (¯ y) to construct x, ¯

the quadratic program QP¯ y as in (4).
x,¯

Step 3: Solve Quadratic Problem and Construct (∆x, ∆y).
Solve the quadratic problem QPx̄,ȳ and obtain primal solution ∆x

y. Set ∆y = ˜and (dual) multipliers ˜ y − ȳ.

9

Step 4: Compute Step-size and Update. Compute

α := arg min P (¯¯ x + α∆x) .
α∈[0,1]

x, ¯ x, ȳ) + ̄Update iterate values (¯ y) ← (¯ α(∆x, ∆y). Go to Step 2.

In some versions of the SQP method, the matrix ∇x,xL(¯2 x, ȳ) is not com-
puted exactly at each iteration. Instead, we work with an approximation
B(¯ y) of ∇x,xL(¯ x, ¯x, ¯ 2 x, ȳ) at each iteration, and B(¯ y) is “updated” from it-
eration to iteration by simple rules and formulas that do not require much
extra computation.

4.4 Where Does QPx̄,ȳ Come From?

Herein we attempt to give some more insight/understanding regarding the
choice of the quadratic program QP¯ y and the resulting direction (∆x, ∆y).x,¯

We will present an alternative derivation of the direction (∆x, ∆y) that
shows how it arises from considerations of Newton’s method applied to a
KKT system related to the original problem. It is best for starters to assume
that our problem only has equality constraints:

ENLP: minimizex f (x)

s.t. gi(x) = 0, i ∈ E (5)

nx ∈ � .

Then QP¯ y for this problem is exactly: x,¯

x,ȳ x)T (∆x) + 1
x,x x, ¯QP¯ : minimize∆x ∇f (¯ 2 (∆x)T ∇2 L(¯ y)(∆x)

x) + ∇gi(¯s.t. gi(¯ x)T (∆x) = 0, i ∈ E
(6)

n∆x ∈ � .

Let ˜ denote the multipliers on the equality constraints. Because thisy
quadratic problem has no inequalities, we can use (1) to write the KKT
conditions of this system as:

10

[] ∑ ∑

[] ∑ ∑

∑

∑

yi∇2∇f (¯ x) + ¯ gi(¯ x) = 0x) + ∇2f (¯ x) (∆x) + ỹi∇gi(¯
i∈E i∈E

(7)
gi(¯ x)T (∆x) = 0, i ∈ E ,x) + ∇gi(¯

Now let ∆y = ỹ − ȳ and substitute:

yi∇2∇f (¯ x) + ¯ gi(¯ yi + ∆yi) ∇gi(¯x) + ∇2f (¯ x) (∆x) + (¯ x) = 0
i∈E i∈E

gi(¯ x)T (∆x) = 0, i ∈ E .x) + ∇gi(¯

(8)
Then the solution (∆x, ∆y) of (8) is the SQP direction.

We now show how the system of equations (8) in (∆x, ∆y) arises from
Newton’s method applied to the KKT system of the original problem. The
KKT conditions for problem ENLP are:

KKT : ∇f (x) + yi∇gi(x) = 0
i∈E (9)

gi(x) = 0, i ∈ E .

Our current point is (x, y) = (¯ y), and let us consider moving in the x, ¯
x+∆x, ȳ+∆y). We would like (¯direction (∆x, ∆y) to a point (¯ x+∆x, ȳ+∆y)

to satisfy the KKT conditions for the problem ENLP, namely:

x + ∆x) + (¯ x + ∆x) = 0KKT : ∇f (¯ yi + ∆yi)∇gi(¯

i∈E
 (10)

gi(x̄ + ∆x) = 0, i ∈ E .

Replacing each of the nonlinear terms with their linear approximations
yields:

11

∑ ()

[] ∑	 ∑

2∇f (¯ x)(∆x) + (¯ x) + ∇ gi(¯x) + ∇2f (¯ yi + ∆yi) ∇gi(¯ x)(∆x) = 0
i∈E

gi(¯ x)T (∆x) = 0, i ∈ E .x) + ∇gi(¯

(11)
Finally, we delete the second-order terms “∆yi∇2gi(x̄)(∆x)” and rearrange
the layout to yield the following completely linear system in (∆x, ∆y):

yi∇2∇f (¯ x) + ¯ gi(¯ yi + ∆yi)∇gi(¯x) + ∇2f (¯ x) ∆x + (¯ x) = 0
i∈E	 i∈E

gi(¯ x)T (∆x) = 0, i ∈ E .x) + ∇gi(¯

(12)
This is the Newton direction system associated with the original KKT con-
ditions (9) for ENLP at (¯ y). Now notice that the equation system (12) x, ¯
is a rearranged version the system (8), and so the solution (∆x, ∆y) of (12)
and (8) are the same. Here we have shown that the SQP direction (∆x, ∆y)
is the Newton direction for the KKT system for ENLP at (¯ y).x, ¯

5	 LOQO: Combining Interior-Point Methods and
SQP

The software LOQO has been developed by Professors Robert Vanderbei
and David Shanno primarily over the last ten years. LOQO combines ideas
from SQP and interior-point methods. Herein we describe the more salient
features of the LOQO algorithm methodology. For this section it will be
convenient to restrict our discussion to NLP problems with inequality con-
straints only, namely:

12

∑

∑

INLP: minimizex f(x)

s.t. gi(x) ≤ 0, i ∈ I (13)

nx ∈ � .

This problem is then converted to equality form by explicitly adding slack
variables s and a logarithmic barrier function:

BNLPµ : minimizex f(x) − µ ln(si)
i∈I

s.t.	 g(x) + s = 0 (14)

x ∈ �n, s > 0.

where
g(x) := (g1(x), . . . , gm(x)) .

We then form the Lagrangian for this problem by assigning (dual) multipliers
y to the constraints:

L(x, s, y) = f(x) − µ ln(si) + y T (g(x) + s) .
i∈I

The KKT conditions for the problem BNLPµ are:

∇f(x) + yT ∇g(x) = 0

−µS−1e + y = 0
(15)

g(x) + s = 0 ,

which we re-write equivalently as:

∇f(x) + yT ∇g(x) = 0

−µe + SY e = 0
(16)

g(x) + s = 0 ,

13

∑

∑

Given iterate values (¯ s, ¯x, ̄ y), the Newton equations for the above KKT sys-
tem are:

	 ∇2f (¯ x) 0 (∇g(¯	 x) − ȳT ∇g(¯
x) + ȳi∇2 gi(¯ x))T

∆x
 −∇f (¯ x) i∈I	 ¯ ¯ 	

S ̄ ∆s = µe − SY e , 0 Y ̄

∇g(¯	 −g(x̄) − s̄x) I 0 ∆y

(17)
which using (1) is the same as:

	 ∇2	 L(¯ y) 0 (∇g(¯ x) − ȳT ∇g(¯x, ¯ x))T ∆x −∇f (¯ x)x,x
¯ ¯ 0 Y ̄ S ̄ ∆s = µe − SY e . (18)

x) I 0 ∆y −g(¯
∇g(¯	 x) − s̄

This system is essentially the same as an SQP system with the addition
of logarthmic barrier function. LOQO solves this system at each iteration to
obtain the iterate direction (∆x, ∆s, ∆y). LOQO then updates the iterates
using a step-size ᾱ by computing:

x, ̄ y) ← (¯ s, ¯ α(∆x, ∆s, ∆y) .(¯ s, ¯ x, ̄ y) + ̄

Here ᾱ is chosen to minimize the following merit function:

Pµ,ρ(x, s) = f (x) − µ ln(si) + ρ‖g(x) + s‖2 .
i∈I

A more complete description of LOQO’s algorithm methodology can be
found in the following article:

“An interior point algorithm for nonconvex nonlinear programming” by R.
Vanderbei and D. Shanno, Computational Optimization and Applications 13
(1999), pp. 231-252.

6	 Illustration of Practical Issues in Solving NLP
Problems

6.1 Illustration I: A Simple Covering Problem

Consider the problem of determining the smallest disk that contains the m
given points c1, . . . , cm. The decision variables in the problem are the center

14

x and the radius R of the containing disk. The problem has the simple

formulation:

CDP1 : minimizex,R R
s.t. ‖x − ci‖ ≤ R, i = 1, . . . , m

x ∈ �n, R ∈ � ,

where in this case n = 2 is the dimension in which the problem arises. As
written the problem is convex but non-differentiable. Why might this be a
problem for a solver?

6.1.1 Reformulations

We explore several different reformulations of the simple covering problem
CDP1. We use these reformulations to become familiar with syntax and con-
struction in Ampl (and LOQO). We attempt to solve the non-differentiable
formulation of the problem as a means to explore some of the tricks and art
that is necessary when we attempt to tackle non-convex problems.

The original simple covering problem can be reformulated in several
ways. For example, if we square the non-differentiable constraint function
and recognize that minimizing R is the same as minimizing R2, we obtain:

CDP2 : minimizex,R R (or R2)
Ts.t.	 xT x − 2xT ci + ci ci ≤ R2 , i = 1, . . . , m

R ≥ 0
x ∈ �n, R ∈ � ,

If we let δ = R2, we obtain a reformulation of the problem with a linear
objective function and a quadratic constraint function:

CDP3 : minimizex,δ δ
T Ts.t.	 xT x − 2x ci + ci ci − δ ≤ 0 i = 1, . . . , m

x ∈ �n, δ ∈ � ,

If we let α = xT x−δ in CDP3, we obtain a reformulation of the problem
with a quadratic objective and a linear constraints:

TCDP4 : minimizex,α x x − α
T Ts.t.	 α − 2x ci + ci ci ≤ 0 i = 1, . . . , m

x ∈ �n, α ∈ � ,

15

6.1.2 Solving CDP

We now explore the solution of the various formulations of the Simple Cov-
ering Problem using Ampl with LOQO. We used several very contrived data
sets in order to explore and understand the behavior of the solution meth-
ods, and then we solved the problem using more realistic data sets. The
data sets we used are listed in Table 1 and are shown in Figures 1, 2, 3, 4,
and 5.

Data Set Description

Cover1.dat 10 × 10 grid of points
Cover2.dat random distribution of set of points
Cover3.dat 10 × 9 grid with 10 outliers
Cover4.dat roughly 10 × 9 grid with 10 points near center
Cover5.dat 10 × 9 grid with 10 points near center

Table 1: Data sets for the Simple Covering Problem.

•	 The Ampl file CDPlqnc.mod is the original formulation (CDP1) of
the packing problem. Try running this problem in Ampl with the data
file cover1.dat. You should find that it does not solve. Why?

•	 The Ampl file CDPql.mod contains the formulation CDP4 (quadratic
objective and linear constraints) version of the problem. CDPql2.mod
contains the same formulation as CDPql.mod but demonstrates the
problem command in Ampl. The Ampl file CDPlq.mod contains the
formulation CDP3 (linear objective and quadratic constraints) version
of the problem. All of these formulations of the problem solve very
rapidly, with zero duality gap.

–	 Experiment1: Solve CDPql2.mod with the LOQO convex op-
tion turned on and off. Is there a difference? If so, why?

–	 Experiment2: Solve CDPlq.mod with the LOQO convex option
turned on and off. Is there a difference? If so, why?

•	 The Ampl file CDPlqnc2.mod “solves” the original formulation CDP1.
However, we first pre-solve the problem with one of the differentiable

16

formulations and then use this solution, modified slightly, as the start-
ing point for the non-differentiable problem CDP1. The non-differentiable
problem now solves. What does this suggest?

data: cover1.dat Center: (5.5 5.5). Radius : 6.364

−2 0 2 4 6 8 10 12

0

2

4

6

8

10

y

x

Figure 1: Data Set Cover1.dat

6.2 Illustration II: The Partial Covering Problem

Consider the following variation of the simple covering problem CDP, where
we would like to find the smallest disk that contains 90% of the points. This
problem is called the Partial Covering Problem. It arises in data mining, for
example. The partial covering problem can be formulated as the following
mixed integer problem:

17

data: cover2.dat Center: (5.1 4.7). Radius : 5.9548

0

2

4

6

8

10

y

−2 0 2 4 6 8 10 12

x

Figure 2: Data Set Cover2.dat

data: cover3.dat Center: (10.5 10.5). Radius : 13.435

0

5

10

15

20

y

−5 0 5 10 15 20

x

Figure 3: Data Set Cover3.dat

18

25

data: cover4.dat Center: (5.3 5.3). Radius : 5.4203

0

1

2

3

4

5

6

7

8

9

10

y

0 2 4 6 8 10 12

x

Figure 4: Data Set Cover4.dat

data: cover5.dat Center: (5.5 5). Radius : 6.0208

0

2

4

6

8

10

y

−2 0 2 4 6 8 10 12

x

Figure 5: Data Set Cover5.dat

19

∑

IPCP : minimizex,R,y,s R
s.t. ‖x − ci‖ ≤ R + si i = 1, . . . , m

si ≤ Cyi i = 1, . . . , m
m ∑

yi ≤ 0.1m
i=1
x ∈ �n, R ∈ �, s ≥ 0, s ∈ �m

yi ∈ {0, 1}, i = 1, . . . , m .

Here C is chosen beforehand as a large constant. In this formulation
the nonnegative variable si is used to relax the constraint that forces ci to
be covered. The binary variable yi is then turned on (si ≤ Cyi) and the

m
constraint yi ≤ 0.1m allows at most 10% of the points to be un-covered.

i=1
This model should not be easy to solve. Why?

6.2.1	 Reformulation of Partial Covering Problem using the Sig-
moid Function

We use the sigmoid function:

1
fα(s) := −αs1 + e

to replace the integer variables yi and the constraints “si ≤ Cyi ” in the
model. The sigmoid function with parameter α > 0 has the following at-
tractive properties:

fα(s) → 0 as s → −∞.

fα(s) → 1 as s → +∞.

1 − fα(s) = fα(−s).

fα(0) = 1 .2

A graph of this function is shown in Figure 6. Note that if α is chosen
sufficient large, then the shape of fα(s) is almost the step function with step
at s = 0.

20

∑

Figure 6: The sigmoid function.

Using the sigmoid function, our problem can be approximated as the
following smooth nonlinear non-convex problem:

NPCP : minimizex,R,s R
s.t. ‖x − ci‖ ≤ R + si i = 1, . . . , m

m ∑
fα(si) ≤ 0.1m

i=1
x ∈ �n, R ∈ �, s ∈ �m .

6.2.2 Another Reformulation

Here we explore a reformulation of NPCP. (You are asked to develop other
reformulations in the homework assignment.) If we square the non-differentiable
constraint functions and recognize that minimizing R is the same as mini-
mizing R2, we obtain:

NPCP2 : minimizex,R,s R (or R2)
Ts.t. xT x − 2xT ci + ci ci ≤ R2 + 2Rsi + s2 i = 1, . . . , mi

m
fα(si) ≤ 0.1m

i=1
R ≥ 0

mx ∈ �n, R ∈ �, s ∈ � .

The Ampl file CDPlqsig1.mod contains this formulation of the packing
problem.

21

6.2.3 Solutions of the Partial Covering Problem

We solved the Partial Covering Problem using data sets Cover1.dat and
Cover3.dat. Table 2 shows results of computational experiments with Cover1.dat
for the 90% partial covering problem. Table 3 shows results of solving the
90% partial covering problem on the data set Cover3.dat. Table 4 shows re-
sults of solving the 89% partial covering problem on the data set Cover3.dat.

As Table 2 shows, we were able to select an appropriate value of α that
worked rather well for Cover1.dat. Notice the sensitivity to the sigmoid
smoothing parameter α. The larger that α becomes the more difficult the
problem is to solve to a small duality gap. Why might this be so?

For the data set Cover3.dat, Table 3 shows clearly that there does not
0 0appear to be a reasonable combination of α and starting point (x1, x2) for

which the algorithm works well. Notice that even if we initialize the solver
at the known solution the problem (x0 = 5.5, x0 = 5.0), the algorithm still 1 2
moves to a non-global local optimum in all cases.

Table 4 shows computational results on data set Cover3.dat as the cov-
ering percentage is lowered from 90% to 89%. With this 1% relaxation we
find that the value of the computed solution is mostly immune to initial con-
ditions for small values of α (large values of α continue to make the problem
hard to solve), and for α = 10 the problem appears to be very insensitive to
initial conditions.

Initial Values Solution Values
LOQO LOQO LOQO Actual
Primal Dual Duality Primal

α x0
1 x0

2 R0 Iterations x ∗
1 x ∗

2 Value Value Gap (%) Gap (%)

5 5.5 5.5 6.634 114 5.50 5.50 5.60 5.60 0.00 3.27
6 5.5 5.5 6.634 79 5.50 5.50 5.58 5.58 0.00 3.03

6.5 5.5 5.5 6.634 1,000 5.40 5.43 5.58 5.59 0.11 2.99
7 5.5 5.5 6.634 1,000 5.41 5.35 5.58 5.60 0.39 2.98
10 5.5 5.5 6.634 1,000 5.31 5.33 5.59 5.68 1.76 3.04
20 5.5 5.5 6.634 1,000 5.31 5.32 5.59 5.67 1.34 3.14
50 5.5 5.5 6.634 1,000 5.60 5.59 5.64 5.91 4.71 4.13
100 5.5 5.5 6.634 1,000 5.39 5.47 5.63 5.10 -9.51 3.89
200 5.5 5.5 6.634 1,000 5.48 5.43 5.66 5.06 -10.59 4.40

Ideal Solution from Cover4.dat at 100%: 5.30 5.30 5.42

Table 2: Solution of the 90% Partial Covering Problem Model CDP2 using
LOQO for the data set Cover1.dat.

22

Initial Values Solution Values
LOQO LOQO LOQO Actual
Primal Dual Duality Primal

α x0
1 x0

2 R0 Iterations x ∗
1 x ∗

2 Value Value Gap (%) Gap (%)

7 5.5 5.5 6.364 1000.00 5.50 5.00 8.34 8.48 1.68 38.50
7 5 5.5 6.364 1000.00 5.50 5.00 8.33 8.47 1.69 38.31
7 5.5 5 6.364 1000.00 5.33 4.77 10.87 >> 0 - 80.61
7 0 0 6.364 78.00 11.36 11.36 12.52 12.52 0.00 107.87
7 10.5 10.5 13.435 1000.00 5.50 5.00 8.32 8.47 1.69 38.24
7 5.5 5.5 0 1000.00 11.31 11.21 12.86 10.54 -22.00 113.58
7 5.5 5 6.0208 1000.00 5.66 5.18 10.28 >> 0 - 70.68
7 1 1 0 1000.00 5.50 5.00 8.36 8.50 1.68 38.80

10 5.5 5.5 6.364 1000.00 5.50 5.00 8.63 8.73 1.15 43.33
10 5 5.5 6.364 1000.00 5.50 5.00 8.40 8.50 1.18 39.52
10 5.5 5 6.364 1000.00 9.87 9.79 13.61 >> 0 - 126.06
10 0 0 6.364 1000.00 5.46 5.04 9.04 5.61 -61.25 50.22
10 10.5 10.5 13.435 1000.00 5.50 5.00 7.67 7.77 1.29 27.39
10 5.5 5.5 0 1000.00 5.50 5.00 7.67 7.77 1.29 27.35
10 5.5 5 6.0208 1000.00 5.38 4.96 7.82 >> 0 - 29.87
10 1 1 0 1000.00 5.70 5.29 15.91 >> 0 - 164.26

20 5.5 5.5 6.364 1000.00 9.89 10.26 12.58 >> 0 - 108.92
20 0 0 6.364 1000.00 -3.74 -2.78 28.17 >> 0 - 367.85
20 10.5 10.5 13.435 1000.00 11.87 12.43 11.98 >> 0 99.99 98.93
20 5.5 5 6.0208 1000.00 >> 0 << 0 >> 0 >> 0 - -
20 1 1 0 1000.00 5.40 4.88 6.51 >> 0 99.94 8.06
30 1 1 0 1000.00 -23.34 -21.76 36.23 >> 0 - 501.74
Ideal Solution from Cover5.dat at 100%: 5.50 5.00 6.0208

Table 3: Solution of the 90% Partial Covering Problem Model CDP2 using
LOQO for the data set Cover3.dat.

What might be a better reformulation of PCP? You will be asked to
propose and solve an alternative formulation and in your homework assign-
ment.

6.3 Illustration III: A Packing Problem

Consider the problem of packing a variety of wires of various radii into
a cable. The m wires have given radii r1, r2, . . . , rm. We would like to
determine the minimum width of a cable that will be used to enclose the
wires. We can conceptualize this problem by considering a cross-section of

1 mthe cable. The decision variables in the problem are the centers x , . . . , x
of m disks of radii r1, . . . , rm, and the radius R of the disk that is the cross-

23

Initial Values Solution Values
LOQO LOQO LOQO Actual
Primal Dual Duality Primal

α x0
1 x0

2 R0 Iterations x ∗
1 x ∗

2 Value Value Gap (%) Gap (%)

7 10.5 10.5 13.435 52.00 5.50 5.00 6.18 6.18 0.00 2.69
10 10.5 10.5 13.435 69.00 5.50 5.00 6.13 6.13 0.00 1.83
15 10.5 10.5 13.435 109.00 5.50 5.00 6.09 6.09 0.00 1.22
20 10.5 10.5 13.435 84.00 11.42 11.42 12.29 12.29 0.00 104.08
30 10.5 10.5 13.435 1000.00 11.84 11.07 12.29 12.25 -0.34 104.14

7 5.5 5.5 6.634 48.00 5.50 5.00 6.18 6.18 0.00 2.69
10 5.5 5.5 6.634 146.00 5.50 5.00 6.13 6.13 0.00 1.83
15 5.5 5.5 6.634 1000.00 9.69 10.15 12.70 << 0 - 110.95
20 5.5 5.5 6.634 1000.00 9.78 10.10 12.81 << 0 - 112.74

7 1 1 0 128.00 5.50 5.00 6.18 6.18 0.00 2.69
10 1 1 0 94.00 5.50 5.00 6.13 6.13 0.00 1.83
15 1 1 0 1000.00 1.67 2.46 -0.01 >> 0 - -100.24

7 0 0 0 177.00 5.50 5.00 6.18 6.18 0.00 2.69
10 0 0 0 183.00 5.50 5.00 6.13 6.13 0.00 1.83
15 0 0 0 121.00 11.43 11.43 12.32 12.32 0.00 104.65
Ideal Solution from Cover5.dat at 100%: 5.50 5.00 6.0208

Table 4: Solution of the 89% Partial Covering Problem Model CDP2 using
LOQO for the data set Cover3.dat.

section of the enclosing cable. This problem has the following formulation:

PACK : minimizex1,...,xm,R R
s.t.	 ‖xi − xj ‖ ≥ ri + rj 1 ≤ i < j ≤ m

‖xi‖ + ri ≤ R i = 1, . . . , m
x1, . . . , xm ∈ �n, R ∈ � ,

where in this case n = 2 is the dimension in which the problem arises. The
first set of constraints ensures that no two wires occupy the same space, and
the second set of constraints ensures that the cable encloses all of the wires.
As stated this problem is also a nonlinear non-convex optimization problem.

6.3.1 Reformulations of the Packing Problem

One problem with the constraints of PACK is that the constraint functions
are not differentiable. We can reformulate PACK to alleviate this problem
by squaring the constraints:

24

PACK2 : minimizex1,...,xm,R R (or R2)
s.t.	 ‖xi − xj ‖2 ≥ (ri + rj)2 1 ≤ i < j ≤ m

‖xi‖2 ≤ (R − ri)2 i = 1, . . . , m
R − ri ≥ 0 i = 1, . . . , m
x1, . . . , xm ∈ �n, R ∈ � ,

Note that we add the constraints “R − ri ≥ 0, i = 1, . . . , m. Why?

We could choose to square the objective (minimize R2) or keep it as
it was originally stated (minimize R). This may make a difference when
attempting to solve the problem.

6.3.2 Solutions of the Packing Problem

The file PP.mod contains the Ampl code for the formulation PACK2 of
the packing problem. As noted, this formulation is still nonlinear and non-
convex. We expect to have difficulties solving this problem. We now know
that we should start with a good initial guess of the solution. However, for
the packing problem it is difficult to determine such an initial guess.

What are some potential algorithmic tricks or approaches that we might
use to try to solve the packing problem?

•	 Start the optimization routine near an optimal solution. The issue
here is how to construct the initial guess. You are invited to create
and test your own heuristic methods for this approach.

•	 Try starting with a small subset of the disks, and add a new disk (and
the associated new constraints) one at a time.

•	 Other ideas?

We started with two small disks as input and solved the problem. We
then added another disk, and modified the previous solution in a way that
we know will admit the new disk, and re-solved the resulting model again. In
this way, at each iteration, we have a good initial condition and so we hope
that we converge correctly to the global optimal solution of the original
problem in this fashion. By adding disks one at a time, we are actually
adding constraints (several at a time). If you want, you can think of this as

25

starting with a highly relaxed version of the problem and slowly remove the
relaxation.

(The academic framework for the ideas above is the concept of homotopy.
A homotopy is a continuous transformation from one problem to another.
For example, a homotopy between a complicated function f(x) and a simple
function g(x) from a space X to a space Y is a continuous map G(x, t), from
X×[0, 1] �→ Y for which G(x, 0) = f(x) and G(x, 1) = g(x). We could try to
solve for f(x) = 0 by starting at the easy-to-compute solution x̄ of g(x) = 0
and tracing the path of solutions of G(x, t) = 0 starting with G(x̄, 1) = 0
and shrinking t to 0.)

The file PP2.com contains the Ampl code for an iterative solution to
the packing problem. The data files Pack4.dat and Pack4a.dat each contain
lists of data for 50 disks, of which 25 disks have radius 5 and 25 disks have
radius 10. In Pack4.dat the disks are ordered so that the 25 disks with radius
10 are listed first, followed by the 25 disks of radius 5. In Pack4a.dat the
disks are ordered with alternating radii 10, 5, 10, 5, . . . , 5. Figures 7 and 8
show the final solutions for these two data sets. Notice that the different
ordering of the disks have led to slightly different solutions with slightly
different objective function values: 62.8256 for Pack4.dat versus 62.6141 for
Pack4a.dat. We will show several movies of the iterations of the algorithm
in class.

The data files Pack43d.dat and Pack4a3d.dat are data for a 3-dimensional
version of the packing problem. Each data file contains lists of radii for 50
spheres, of which 25 spheres have radius 5 and 25 spheres have radius 10. In
Pack43d.dat the spheres are ordered so that the 25 spheres with radius 10
are listed first, followed by the 25 spheres of radius 5. In Pack4a3d.dat the
spheres are ordered with alternating radii 10, 5, 10, 5, . . . , 5. Figures 9 and
10 show the final solutions for these two data sets. Notice that the different
ordering of the spheres have led to slightly different solutions with slightly
different objective function values: 37.1878 for Pack43d.dat versus 37.6625
for Pack4a3d.dat. We will also show several movies of the iterations of the
algorithm in class.

26

y

pack4 , Radius 62.8256

80
 Data Set pack4. Count 50

60

40

20

0

−20

−40

−60

Radius 62.8256

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

41

42

43

44

45

46

47

48

49
50

−80 −60 −40 −20	 0 20 40 60 80

x

−80

Figure 7: Packing Problem solution for data set pack4.dat.

27

y

pack4a , Radius 62.6141

Data Set pack4a. Count 50

60

40

20

0

−20

−40

−60

Radius 62.6141

−60 −40 −20 0 20 40 60

x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

49

50

Figure 8: Packing Problem solution for data set pack4a.dat.

28

