Rule Mining and the Apriori Algorithm MIT 15.097 Course Notes Cynthia Rudin

The Apriori algorithm - often called the "first thing data miners try," but somehow doesn't appear in most data mining textbooks or courses!

Start with market basket data:

Some important definitions:

- Itemset: a subset of items, e.g., (bananas, cherries, elderberries), indexed by $\{2, 3, 5\}$.
- Support of an itemset: number of transactions containing it,

Supp(bananas, cherries, elderberries) =
$$\sum_{i=1}^{m} M_{i,2} \cdot M_{i,3} \cdot M_{i,5}$$
.

• Confidence of rule $a \rightarrow b$: the fraction of times itemset b is purchased when itemset a is purchased.

$$Conf(a \to b) = \frac{Supp(a \cup b)}{Supp(a)} = \frac{\#times \ a \text{ and } b \text{ are purchased}}{\#times \ a \text{ is purchased}}$$
$$= \hat{P}(b|a).$$

We want to find all **strong rules**. These are rules $a \rightarrow b$ such that:

 $\operatorname{Supp}(a \cup b) \ge \theta$, and $\operatorname{Conf}(a \to b) \ge \operatorname{minconf}$.

Here θ is called the **minimum support threshold**.

The support has a monotonicity property called *downward closure*:

If
$$\operatorname{Supp}(a \cup b) \ge \theta$$
 then $\operatorname{Supp}(a) \ge \theta$ and $\operatorname{Supp}(b) \ge \theta$.

That is, if $a \cup b$ is a frequent item set, then so are a and b.

$$Supp(a \cup b) = \#times a and b are purchased$$

 $\leq \#times a is purchased = Supp(a).$

Apriori finds all frequent itemsets (a such that $\text{Supp}(a) \ge \theta$). We can use Apriori's result to get all strong rules $a \to b$ as follows:

- For each frequent itemset ℓ :
 - Find all nonempty subsets of ℓ
 - For each subset a, output $a \to \{\ell \setminus a\}$ whenever

$$\frac{\operatorname{Supp}(\ell)}{\operatorname{Supp}(a)} \ge \operatorname{minconf.}$$

Now for Apriori. Use the downward closure property: generate all k-itemsets (itemsets of size k) from (k-1)-itemsets. It's a breadth-first-search.

Apriori Algorithm:

Input: Matrix M

 $L_1 = \{ \text{frequent 1-itemsets}; i \text{ such that } \text{Supp}(i) \ge \theta \}.$

For k = 2, while $L_{k-1} \neq \emptyset$ (while there are large k - 1-itemsets), k + +

- $C_k = \operatorname{apriori_gen}(L_{k-1})$ generate candidate itemsets of size k
- $L_k = \{c : c \in C_k, \text{ Supp}(c) \ge \theta\}$ frequent itemsets of size k (loop over transactions, scan the database)

end

Output: $\bigcup_k L_k$.

The subroutine apriori_gen joins L_{k-1} to L_{k-1} .

apriori_gen Subroutine:

Input: L_{k-1}

Find all pairs of itemsets in L_{k-1} where the first k-2 items are identical.

Union them (lexicographically) to get $C_k^{\text{too big}}$,

e.g.,
$$\{a, b, c, d, e, f\}, \{a, b, c, d, e, g\} \rightarrow \{a, b, c, d, e, f, g\}$$

Prune: $C_k = \{c \in C_k^{\text{too big}}, \text{all } (k-1) \text{-subsets } c_s \text{ of } c \text{ obey } c_s \in L_{k-1}\}.$

Output: C_k .

Example of Prune step: consider $\{a, b, c, d, e, f, g\}$ which is in $C_k^{\text{too big}}$, and I want to know whether it's in C_k . Look at $\{a, b, c, d, e, f, g\}$, $\{a, b, c, d, e, f, g\}$, $\{a, b, \ell, d, e, f, g\}$, $\{a, b, c, d, e, f, g\}$, etc. If any are not in L_6 , then prune $\{a, b, c, d, e, f, g\}$ from L_7 .

Image by MIT OpenCourseWare, adapted from Osmar R. Zaïane.

- Apriori scans the database at most how many times?
- Huge number of candidate sets. $\ensuremath{\textcircled{\sc b}}$
- Spawned huge number of apriori-like papers.

What do you do with the rules after they're generated?

- Information overload (give up)
- Order rules by "interestingness"
 - Confidence

$$\hat{P}(b|a) = \frac{\operatorname{Supp}(a \cup b)}{\operatorname{Supp}(a)}$$

- "Lift" / "Interest"

$$\frac{P(b|a)}{\hat{P}(b)} = \frac{\operatorname{Supp}(b)}{1 - \frac{\operatorname{Supp}(a \cup b)}{\operatorname{Supp}(a)}}$$

:

- Hundreds!

Research questions:

- mining more than just itemsets (e.g., sequences, trees, graphs)
- incorporating taxonomy in items
- boolean logic and "logical analysis of data"
- Cynthia's questions: Can we use rules within ML to get good predictive models?

15.097 Prediction: Machine Learning and Statistics Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.