I. Integer programming part of Clarkson-paper

II. Incremental Linear Programming, Section 9.10 .1 in Randomized Algorithms-book

presented by Jan De Mot

September 29, 2003

This presentation is based on: Clarkson, Kenneth L. Las Vegas Algorithms for Linear and Integer Programming When the Dimension is Small. Journal of the ACM 42(2), March 1995, pp. 488-499. Preliminary version in Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, 1988.
and Chapter 9 of: Motwani, Rajeev, and Prabhakar Raghavan. Randomized Algorithms. Cambridge, UK: Cambridge University Press, 1995.

Outline

Part I: Integer Linear Programming (ILP)

- Previous work
- Algorithm for solving Integer Linear Programs [Clarkson 1995] based on the mixed algorithm for LP (Susan)
- Concept
- Running Time Analysis

Part II: Incremental Linear Programming

- Concept
- SeideLP [Seidel 1991]
- BasisLP [Sharir and Welzl 1992]

Part I: Integer Linear Programming

Previous Work

- [Lenstra 1983] showed how to solve an ILP in polynomial time when the numbers of variables is fixed.
- Subsequent improvements (e.g. by [Frank and Tardos 1987]) show that the fasted deterministic algorithm requires $d^{O(d)} n \phi$ operations on $d^{O(1)} \phi$-bit numbers.
- Running time of new ILP algorithm: $O\left(2^{d}+8^{d} \sqrt{n \ln n} \ln n\right)$ This is substantially faster than Lenstra's for $n \gg d$.

ILP Problem

- Find the optimum of:

$$
\max \{\mathbf{c x} \mid \mathbf{A x} \leq \mathrm{b} ; \mathbf{x} \text { integral }\}
$$

where $\mathbf{A} \in Q^{n \times d}, \mathbf{b} \in Q^{n}$ and $\mathbf{c} \in Q^{d}$.

Notation and Preliminaries

- Let:
- H denote the set of constraints defined by \mathbf{A} and b ,
- $\mathrm{x}^{*}(S)$ denote the optimal solution of the ILP defined on $S \subseteq H$ (not the corresponding LP relaxation).
- Assume:
- Bounded solution by adding to H a new set of $2 d$ constraints \hat{H} :

$$
\left|x_{i}\right| \leq 2^{K_{d}}+1, \text { for } 1 \leq i \leq d,
$$

where $K_{d}=2 d^{2} \phi+\left\lceil\log _{2}(n+1)\right\rceil$, and where we use a result by [Schrijver 1986]: if an ILP has finite solution, then every coordinate of that optimum has size no more than K_{d} where ϕ is the facet complexity of $\mathcal{F}(\mathbf{A}, \mathrm{b})$.

- Unique solution by choosing the lexicographically largest point achieving the optimum value.

ILP Algorithm: Concept

- First it is established that an optimum is determined by a small set ([Bell 1977] and [Scarf 1977]):
Lemma: There is a set $H^{*} \subseteq H$ with $\left|H^{*}\right| \leq 2^{d}-1$ and with $\mathrm{x}^{*}(H)=\mathrm{x}^{*}\left(H^{*}\right)$
- ILP algorithms are variations on the LP algorithms, with sample sizes using 2^{d} rather than d and using Lenstra's algorithm in the base case.
- Here, we convert the mixed algorithm for LPs to a mixed algorithm for ILPs, establishing the right sample sizes and criteria for successful iterations in both the recursive and iterative part of the mixed algorithm.

ILP Algorithm: Details

- Lemma 2, related to the LP recursive algorithm, needs to be redone due to the fact that H^{*} is not unique.
- Reminder: why do we need lemma 2?

We want to make sure the set of violated constraints V does not become too big.

- Lemma 2 (ILP version): Let $S \subset H$, and let $R \subset H \backslash S$ be a random subset of size $r>2^{d+1}$, with $|H \backslash S|=n$. Let $V \subset S$ be the set of constraints violated by $\mathrm{x}^{*}(R \cup S)$. Then with probability $1 / 2,|V| \leq 2^{d+1} n(\ln r) / r$.
- Other necessary lemma's remain valid or can be adapted easily, yielding the following essential parameters for the ILP mixed algorithm:
- Recursive part: $r=2^{d} \sqrt{2 n \ln n}$, use Lenstra's algorithm for $n \leq 2^{2 d+5} d$, and require $|V| \leq \sqrt{2 n \ln n}$ for a successful iteration.
- Iterative part: $r=2^{2 d+4}(2 d+4)$, with a corresponding $|V|$ bound of $n(\ln 2) / 2^{d+3}$.

ILP Algorithm: Proof of Lemma 2 (ILP version)

- Proof. Lemma 2 (ILP version): With probability $1 / 2$, $|V| \leq 2^{d+1} n(\ln r) / r$.
- Assume S is empty. For S not empty: similar proof. Let $m=2^{d}-1$, and let v_{R} denote the number of constraints in H violated by $x^{*}(R)$.

We know that $x^{*}(R)=x^{*}(T)$, for some $T \subset R$ with $|T| \leq m$.

We want to find $k<n$ such that the probability that $v_{R}>k$ is less then $1 / 2$. This probability is bounded above by:

$$
\sum_{0 \leq i \leq m} \sum_{T \subset H,|T|=i, v_{T}>k} \operatorname{Pr}\left(x^{*}(T)=x^{*}(R)\right)
$$

which is no more than:

$$
\sum_{0 \leq i \leq m}\binom{n}{i} \frac{\binom{n-i-k}{r-i}}{\binom{n}{r}}
$$

ILP Algorithm: Proof of Lemma 2 (cont'd)

which is again no more than:

$$
(m+1)\binom{r}{m} \frac{\binom{n-m-k}{r-m}}{\binom{n-m}{r-m}},
$$

and using elementary bounds, this quantity is less than $1 / 2$ for $k \geq 2^{d+1} n(\ln r) / r$.

ILP Algorithm: Running Time

- We have the following theorem:

The ILP algorithm requires expected

$$
O\left(2^{d}+8^{d} \sqrt{n \ln n} \ln n\right)
$$

row operations on $O\left(d^{3} \phi\right)$-bit vectors, and
$d^{O(d)} \phi \ln n$
expected operations on $O\left(d^{O(1)} \phi\right)$-bit numbers, as $n \rightarrow \infty$ where the constant factors do not depend on d or ϕ.

Part II: Incremental Linear Programming

Incremental LP

- Randomized incremental algorithms for LP
- Concept:
- add n constraints in random order,
- after adding each constraint, determine the optimum of the constraints added so far.
- Two algorithms will be discussed:
- SeideLP
- BasisLP

Algorithm SeideLP

Input: A set of constraints H.
Output: The optimum of the LP defined by H.
0. if $|H|=d$, output $\mathcal{B}(H)=H$.

1. Pick a random constraint $h \in H$; Recursively find $\mathcal{B}(H \backslash\{h\})$;
2.1. if $\mathcal{B}(H \backslash\{h\})$ does not violate h, output $\mathcal{B}(H \backslash\{h\})$ to be the optimum $\mathcal{B}(H)$;
2.2. else project all the constraints of $H \backslash\{h\}$ onto h and recursively solve this new linear programming problem;

SeideLP: Running Time

- Let $T(n, d)$ denote an upper bound on the expected running time for a problem with n constraints in d dimensions.
- Then:

$$
T(n, d) \leq T(n-1, d)+O(d)+\frac{d}{n}[O(d n)+T(n-1, d-1)] .
$$

- First term: cost of recursively solving the LP defined by the constraints $H \backslash\{h\}$
- Second term: checking whether h violates $\mathcal{B}(H \backslash\{h\})$
- Third term (with probability d / n): cost of projecting + recursively solving smaller LP.
- Theorem: There is a constant b such that the recurrence satisfies the solution $T(n, d) \leq b n d!$.

SeideLP: Further Discussion

- In Step 2.2. we completely discard any information obtained from the solution of the LP $H \backslash\{h\}$.

- From the above figure, it follows we must consider all constraints in H.
- But: Can we use $\mathcal{B}(H \backslash\{h\})$ to "jump-start" the recursive call in step 2.2.?
- RESULT: Algorithm BasisLP

Algorithm BasisLP

Input: G, T.
Output: A basis B for G.
0. If $G=T$, output T;

1. Pick a random constraint $h \in G \backslash T$; $T^{\prime}=\operatorname{BasisLP}(G \backslash\{h\}, T)$;
2.1. if h does not violate T^{\prime}, output T^{\prime};
2.2. else output $\operatorname{BasisLP}\left(G, \operatorname{Basis}\left(T^{\prime} \cup\{h\}\right)\right.$);

Basis returns a basis for a set of $d+1$ or fewer constraints.

BasisLP: Why does it work?

- Each invocation of Basis occurs when the violation test in 2.1. fails (i.e. h does violate T^{\prime}).
- What is the probability that we fail a violation test?
- Let $|G|=i$,
- Remember: $h \in G \backslash T$
- $\operatorname{Pr}(h$ violates the optimum of $G \backslash\{h\}) \leq d /(i-|T|)$
- This probability decreases further if T contains some of the constraints of $\mathcal{B}(G)$
- This was indeed the motivation for modifying SeideLP to BasisLP.

BasisLP: Running Time

- Notation:

- Given $T \subseteq G \subseteq H$, we call h enforcing in (G, T) if $\mathcal{O}(G \backslash\{h\})<\mathcal{O}(T)$.
- Let $\Delta_{G, T}$ denote d minus the number of constraints that are enforcing in $(G, T) . \Delta_{G, T}$ is called the hidden dimension of (G, T).
- Lemma 1: If h is enforcing in (H, T) then (i) $h \in T$, and (ii) h is extreme in all G such that $T \subseteq G \subseteq H$.
- So, the probability that a violation occurs
can be bounded by $\Delta_{G, T} /(i-|T|)$.
- We establish that the $\Delta_{G, T}$ decreases by at least 1 at each recursive call in step 2.2. It turns out $\Delta_{G, T}$ is likely to decrease much faster.
- Theorem: The expected running time of BasisLP is $O\left(d^{4} 2^{d} n\right)$.

BasisLP: Analysis Details

- Proof of Lemma 1. If h is enforcing in (H, T) then
- (i) $h \in T$. We have $\mathcal{O}(H \backslash\{h\})<\mathcal{O}(T)$, which can not be true if T were a subset of $H \backslash\{h\}$.
- (ii) h is extreme in all G such that $T \subseteq G \subseteq H$. Assume the contrary: $\mathcal{O}(G \backslash\{h\})=\mathcal{O}(G)$. $\mathcal{O}(T) \leq \mathcal{O}(G)=\mathcal{O}(G \backslash\{h\}) \leq \mathcal{O}(H \backslash\{h\})<\mathcal{O}(T)$, a contradiction.

BasisLP: Analysis Details (Cont'd)

- Lemma 2: Let $T \subseteq F \subseteq G \subseteq H$, and let $h \in F \backslash T$ be an extreme constraint in F. Let S be a basis of $\mathcal{B}(F \backslash\{h\}) \cup\{h\}$. Then:
(i) Any constraint g that is enforcing in (G, T) is also enforcing in (F, S);
(ii) h is enforcing in (F, S);
(iii) $\Delta_{F, S} \leq \Delta_{G, T}-1$.

Proof:

- (i) $\mathcal{O}(T) \leq \mathcal{O}(F \backslash\{h\}) \leq \mathcal{O}(S), \mathcal{O}(G \backslash\{g\})<\mathcal{O}(T)$, then: $\mathcal{O}(F \backslash\{g\}) \leq \mathcal{O}(G \backslash\{g\})<\mathcal{O}(T) \leq \mathcal{O}(F \backslash\{h\}) \leq \mathcal{O}(S)$.
- (ii) Since h is extreme in $F, \mathcal{O}(F \backslash\{h\})<\mathcal{O}(S)$.
- (iii) Follows readily.
- So, the numerator of $\Delta_{G, T} /(i-|T|)$, decreases by at least 1 at each execution.

BasisLP: Analysis Details (Cont'd)

- Show that this decrease is likely to be faster.
- Given $T \subseteq F \subseteq G$, and a random $h \in F \backslash T$ we bound the probability that h violates $\mathcal{B}(F \backslash\{h\})$. If it does, check the probability distribution of the resulting hidden dimension.
- Lemma 3: Let $g_{1}, g_{2}, \ldots, g_{s}$ be the extreme constraints of F that are not in T, numbered so that

$$
\mathcal{O}\left(F \backslash\left\{g_{1}\right\}\right) \leq \mathcal{O}\left(F \backslash\left\{g_{2}\right\}\right) \leq \ldots
$$

Then, for all l and for $1 \leq j \leq l, g_{j}$ is enforcing in ($F, \operatorname{Basis}\left(\mathcal{B}\left(F \backslash\left\{g_{l}\right\}\right) \cup\left\{g_{l}\right\}\right)$). (proof: immediate from lemma 2.)

- In other words: when $h=g_{l}$, then all of $\left\{g_{1}, g_{2}, \ldots, g_{l}\right\}$ will be enforcing and the arguments of the recursive call will have hidden dimension $\Delta_{G, T}-l$.
- Observation: since any g_{i} is equally likely to be h, l is uniformly distributed on the integers in $[1, s]$, and the resulting hidden dimension is uniformly distributed on the integers in [$0, s-1$].

BasisLP: Analysis Details (Cont'd)

- Let $T(n, k)$ denote the maximum expected number of violation tests for a call to BasisLP with arguments $(G, T), \quad$ where $|G|=n$ and $\Delta_{G, T}=k$.
- We get:

$$
T(n, k) \leq T(n-1, k)+1+\frac{T(n, 0)+\ldots+T(n, k-1)}{n-d} .
$$

- This yields: $T(n, k) \leq 2^{k}(n-d)$, and consequently the expected running time of BasisLP is $O\left(d^{4} 2^{d} n\right)$.

Augmenting the analysis with Clarkson's sampling technique improves the running time of the mixed algorithm to $O\left(d^{2} n+b^{\sqrt{d \log d}} \log n\right)$.

