I. Integer programming part of Clarkson-paper

II. Incremental Linear Programming, Section 9.10.1 in Randomized Algorithms-book

presented by Jan De Mot September 29, 2003

This presentation is based on: Clarkson, Kenneth L. *Las Vegas Algorithms for Linear and Integer Programming When the Dimension is Small. Journal of the ACM* 42(2), March 1995, pp. 488-499. Preliminary version in Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, 1988.

and Chapter 9 of: Motwani, Rajeev, and Prabhakar Raghavan. *Randomized Algorithms*. Cambridge, UK: Cambridge University Press, 1995.

Outline

Part I: Integer Linear Programming (ILP)

- Previous work
- Algorithm for solving Integer Linear Programs [Clarkson 1995] based on the mixed algorithm for LP (Susan)
 - Concept
 - Running Time Analysis

Part II: Incremental Linear Programming

- Concept
- SeideLP [Seidel 1991]
- BasisLP [Sharir and Welzl 1992]

Part I: Integer Linear Programming

Previous Work

- [Lenstra 1983] showed how to solve an ILP in polynomial time when the numbers of variables is fixed.
- Subsequent improvements (e.g. by [Frank and Tardos 1987]) show that the fasted deterministic algorithm requires $d^{O(d)}n\phi$ operations on $d^{O(1)}\phi$ -bit numbers.

• Running time of *new* ILP algorithm: $O(2^d + 8^d \sqrt{n \ln n} \ln n)$ This is substantially faster than Lenstra's for $n \gg d$.

ILP Problem

• Find the optimum of:

 $\max{\{\mathbf{cx} | \mathbf{Ax} \leq \mathbf{b}; \mathbf{x} \text{ integral}\}},$

where $A \in Q^{n \times d}$, $b \in Q^n$ and $c \in Q^d$.

Notation and Preliminaries

- Let:
 - $\,H\,$ denote the set of constraints defined by $A\,$ and b ,
 - $\mathbf{x}^*(S)$ denote the optimal solution of the ILP defined on $S \subseteq H$ (not the corresponding LP relaxation).
- Assume:
 - Bounded solution by adding to H a new set of 2d constraints \widehat{H} : $|x_i| \le 2^{K_d} + 1$, for $1 \le i \le d$,

where $K_d = 2d^2\phi + \lceil log_2(n+1) \rceil$, and where we use a result by [Schrijver 1986]: if an ILP has finite solution, then every coordinate of that optimum has size no more than K_d where ϕ is the facet complexity of $\mathcal{F}(\mathbf{A}, \mathbf{b})$.

 Unique solution by choosing the lexicographically largest point achieving the optimum value.

ILP Algorithm: Concept

First it is established that an optimum is determined by a *small* ulletset ([Bell 1977] and [Scarf 1977]): **Lemma:** There is a set $H^* \subseteq H$ with $|H^*| \leq 2^d - 1$ and with

 $\mathbf{x}^*(H) = \mathbf{x}^*(H^*)$

- ILP algorithms are variations on the LP algorithms, with sample sizes using 2^d rather than d and using Lenstra's algorithm in the base case.
- Here, we convert the mixed algorithm for LPs to a mixed algorithm for ILPs, establishing the right sample sizes and criteria for successful iterations in both the recursive and iterative part of the mixed algorithm.

ILP Algorithm: Details

- Lemma 2, related to the LP recursive algorithm, needs to be redone due to the fact that H^* is not unique.
- Reminder: why do we need lemma 2?
 We want to make sure the set of violated constraints V does not become too big.
- Lemma 2 (ILP version): Let S ⊂ H, and let R ⊂ H \ S be a random subset of size r > 2^{d+1}, with |H \ S| = n. Let V ⊂ S be the set of constraints violated by x*(R ∪ S). Then with probability 1/2, |V| ≤ 2^{d+1}n(ln r)/r.
- Other necessary lemma's remain valid or can be adapted easily, yielding the following essential parameters for the ILP mixed algorithm:
 - Recursive part: $r = 2^d \sqrt{2n \ln n}$, use Lenstra's algorithm for $n \le 2^{2d+5}d$, and require $|V| \le \sqrt{2n \ln n}$ for a successful iteration.
 - Iterative part: $r = 2^{2d+4}(2d+4)$, with a corresponding |V| bound of $n(\ln 2)/2^{d+3}$.

ILP Algorithm: Proof of Lemma 2 (ILP version)

- *Proof.* Lemma 2 (ILP version): With probability 1/2, $|V| \le 2^{d+1}n(\ln r)/r$.
- Assume S is empty. For S not empty: similar proof. Let $m = 2^d - 1$, and let v_R denote the number of constraints in H violated by $x^*(R)$. We know that $x^*(R) = x^*(T)$, for some $T \subset R$ with $|T| \leq m$.

We want to find k < n such that the probability that $v_R > k$ is less then 1/2. This probability is bounded above by:

$$\sum_{0 \le i \le m} \sum_{T \subset H, |T| = i, v_T > k} \mathsf{Pr}(x^*(T) = x^*(R)),$$

(

which is no more than:

$$\sum_{0 \le i \le m} \binom{n}{i} \frac{\binom{n-i-\kappa}{r-i}}{\binom{n}{r}},$$

ILP Algorithm: Proof of Lemma 2 (cont'd)

which is again no more than:

$$(m+1)\left(egin{array}{c}r\\m\end{array}
ight)rac{\left(egin{array}{c}n-m-k\\r-m\end{array}
ight)}{\left(egin{array}{c}n-m\\r-m\end{array}
ight)},$$

and using elementary bounds, this quantity is less than 1/2 for $k \ge 2^{d+1}n(\ln r)/r$.

ILP Algorithm: Running Time

 We have the following theorem: The ILP algorithm requires expected O(2^d + 8^d√nln n ln n) row operations on O(d³φ) -bit vectors, and d^{O(d)}φln n expected operations on O(d^{O(1)}φ)-bit numbers, as n → ∞ where

expected operations on $O(d^{O(1)}\phi)$ -bit numbers, as $n \to \infty$ where the constant factors do not depend on d or ϕ .

Part II: Incremental Linear Programming

Incremental LP

- Randomized incremental algorithms for LP
- Concept:
 - add n constraints in random order,
 - after adding each constraint, determine the optimum of the constraints added so far.
- Two algorithms will be discussed:
 - SeideLP
 - BasisLP

Algorithm SeideLP

Input: A set of constraints H. **Output:** The optimum of the LP defined by H.

0. if |H| = d, output $\mathcal{B}(H) = H$.

1. Pick a random constraint $h \in H$;

Recursively find $\mathcal{B}(H \setminus \{h\})$;

2.1. if $\mathcal{B}(H \setminus \{h\})$ does not violate h, output $\mathcal{B}(H \setminus \{h\})$ to be the optimum $\mathcal{B}(H)$;

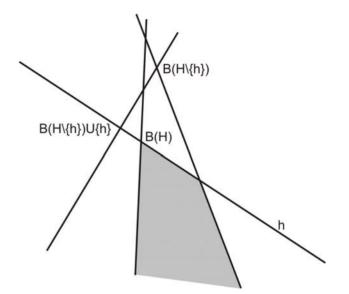
2.2. else project all the constraints of $H \setminus \{h\}$ onto h and recursively solve this new linear programming problem;

SeideLP: Running Time

- Let T(n, d) denote an upper bound on the expected running time for a problem with n constraints in d dimensions.
- Then:
 - $T(n,d) \leq T(n-1,d) + O(d) + \frac{d}{n}[O(dn) + T(n-1,d-1)].$
 - *First term:* cost of recursively solving the LP defined by the constraints $H \setminus \{h\}$
 - Second term: checking whether h violates $\mathcal{B}(H \setminus \{h\})$
 - Third term (with probability d/n): cost of projecting + recursively solving smaller LP.
- **Theorem:** There is a constant b such that the recurrence satisfies the solution $T(n, d) \leq bnd!$.

SeideLP: Further Discussion

 In Step 2.2. we completely discard any information obtained from the solution of the LP H \ {h}.



- From the above figure, it follows we must consider all constraints in H.
- But: Can we use B(H \ {h}) to "jump-start" the recursive call in step 2.2.?
- RESULT: Algorithm BasisLP

Algorithm BasisLP

Input: G, T. Output: A basis B for G.

0. If G = T, output T;

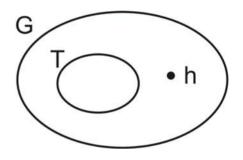
1. Pick a random constraint $h \in G \setminus T$;

 $T' = \mathsf{BasisLP}(G \setminus \{h\}, T);$

2.1. if h does not violate T', output T';

2.2. else output **BasisLP**(G, **Basis**($T' \cup \{h\}$));

Basis returns a basis for a set of d + 1 or fewer constraints.

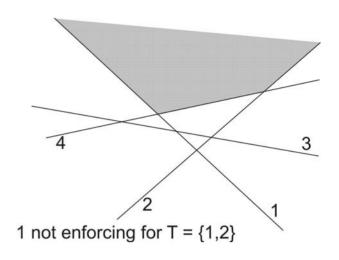


BasisLP: Why does it work?

- Each invocation of Basis occurs when the violation test in 2.1. fails (i.e. *h* does violate *T*').
- What is the probability that we fail a violation test?
 - Let |G| = i,
 - Remember: $h \in G \setminus T$
 - Pr(h violates the optimum of $G \setminus \{h\}$) $\leq d/(i |T|)$
 - This probability decreases further if T contains some of the constraints of $\mathcal{B}(G)$
 - This was indeed the motivation for modifying SeideLP to BasisLP.

BasisLP: Running Time

- Notation:
 - Given $T \subseteq G \subseteq H$, we call henforcing in (G,T) if $\mathcal{O}(G \setminus \{h\}) < \mathcal{O}(T)$.



- Let $\Delta_{G,T}$ denote d minus the number of constraints that are enforcing in (G,T). $\Delta_{G,T}$ is called the *hidden dimension* of (G,T).
- Lemma 1: If h is enforcing in (H,T) then (i) $h \in T$, and (ii) h is extreme in all G such that $T \subseteq G \subseteq H$.
- So, the probability that a violation occurs can be bounded by $\Delta_{G,T}/(i |T|)$.
- We establish that the △_{G,T} decreases by at least 1 at each recursive call in step 2.2. It turns out △_{G,T} is likely to decrease much faster.
- **Theorem:** The expected running time of BasisLP is $O(d^4 2^d n)$.

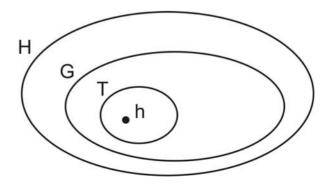
BasisLP: Analysis Details

- Proof of Lemma 1. If h is enforcing in (H,T) then
 - (i) $h \in T$.

We have $\mathcal{O}(H \setminus \{h\}) < \mathcal{O}(T)$, which can not be true if T were a subset of $H \setminus \{h\}$.

- (ii) *h* is extreme in all *G* such that $T \subseteq G \subseteq H$. Assume the contrary: $\mathcal{O}(G \setminus \{h\}) = \mathcal{O}(G)$.

 $\mathcal{O}(T) \leq \mathcal{O}(G) = \mathcal{O}(G \setminus \{h\}) \leq \mathcal{O}(H \setminus \{h\}) < \mathcal{O}(T)$, a contradiction.



BasisLP: Analysis Details (Cont'd)

Lemma 2: Let T ⊆ F ⊆ G ⊆ H, and let h ∈ F \ T be an extreme constraint in F. Let S be a basis of B(F \ {h}) ∪ {h}. Then:

(i) Any constraint g that is enforcing in (G,T) is also enforcing in (F,S); (ii) h is enforcing in (F,S);

(iii) $\Delta_{F,S} \leq \Delta_{G,T} - 1$.

H G F T • h

Proof:

- (i) $\mathcal{O}(T) \leq \mathcal{O}(F \setminus \{h\}) \leq \mathcal{O}(S), \ \mathcal{O}(G \setminus \{g\}) < \mathcal{O}(T),$ then: $\mathcal{O}(F \setminus \{g\}) \leq \mathcal{O}(G \setminus \{g\}) < \mathcal{O}(T) \leq \mathcal{O}(F \setminus \{h\}) \leq \mathcal{O}(S).$
- (ii) Since h is extreme in F, $\mathcal{O}(F \setminus \{h\}) < \mathcal{O}(S)$.
- (iii) Follows readily.
- So, the numerator of $\Delta_{G,T}/(i |T|)$, decreases by at least 1 at each execution.

BasisLP: Analysis Details (Cont'd)

- Show that this decrease is likely to be faster.
- Given T ⊆ F ⊆ G, and a random h ∈ F \ T we bound the probability that h violates B(F \ {h}). If it does, check the probability distribution of the resulting hidden dimension.
- Lemma 3: Let g_1, g_2, \dots, g_s be the extreme constraints of *F* that are not in *T*, numbered so that

 $\mathcal{O}(F \setminus \{g_1\}) \leq \mathcal{O}(F \setminus \{g_2\}) \leq \dots$

Then, for all l and for $1 \le j \le l$, g_j is enforcing in (*F*, **Basis**($\mathcal{B}(F \setminus \{g_l\}) \cup \{g_l\}$)). (proof: immediate from lemma 2.)

- In other words: when $h = g_l$, then all of $\{g_1, g_2, \ldots, g_l\}$ will be enforcing and the arguments of the recursive call will have hidden dimension $\Delta_{G,T} l$.
- Observation: since any g_i is equally likely to be h, l is uniformly distributed on the integers in [1, s], and the resulting hidden dimension is uniformly distributed on the integers in [0, s 1].

BasisLP: Analysis Details (Cont'd)

- Let T(n,k) denote the maximum expected number of violation tests for a call to **BasisLP** with arguments (G,T), where |G| = nand $\Delta_{G,T} = k$.
- We get:

$$T(n,k) \leq T(n-1,k) + 1 + \frac{T(n,0) + ... + T(n,k-1)}{n-d}$$

• This yields: $T(n,k) \leq 2^k(n-d)$, and consequently the expected running time of **BasisLP** is $O(d^4 2^d n)$.

Augmenting the analysis with Clarkson's sampling technique improves the running time of the mixed algorithm to $O(d^2n + b^{\sqrt{d \log d}} \log n).$