Las Vegas Algorithms for Linear (and Integer) Programming when the Dimension is Small

Kenneth L. Clarkson presented by Susan Martonosi

September 29, 2003

This presentation is based on: Clarkson, Kenneth L. *Las Vegas Algorithms for Linear and Integer Programming When the Dimension is Small. Journal of the ACM* 42(2), March 1995, pp. 488-499. Preliminary version in Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, 1988.

Outline

1

- Applications of the algorithm
- Previous work
- Assumptions and notation
- Algorithm 1: "Recurrent Algorithm"
- Algorithm 2: "Iterative Algorithm"
- Algorithm 3: "Mixed Algorithm"
- Contribution of this paper to the field

Applications of the Algorithms

Algorithms give a bound that is "good" in n (number of constraints), but "bad" in d (dimension). So we require the problem to have a small dimension.

- Chebyshev approximation: fitting a function by a rational function where both the numerator and denominator have relatively small degree. The dimension is the sum of the degrees of the numerator and denominator.
- Linear separability: separating two sets of points in *d*-dimensional space by a hyperplane
- Smallest enclosing circle problem: find a circle of smallest radius that encloses points in *d* dimensional space

Previous work

- Megiddo: Deterministic algorithm for LP in $O(2^{2^d}n)$
- Clarkson; Dyer: $O(3^{d^2}n)$
- Dyer and Frieze: Randomized algo. with expected time no better than $O(d^{3d}n)$
- This paper's "mixed" algo.: Expected time $O(d^2n) + (\log n)O(d)^{d/2+O(1)} + O(d^4\sqrt{n}\log n) \text{ as } n \to \infty$

Assumptions

- Minimize x_1 subject to $\mathbf{A}\mathbf{x} \leq \mathbf{b}$
- The polyhedron $\mathcal{F}(\mathbf{A}, \mathbf{b})$ is non-empty and bounded and $0 \in \mathcal{F}(\mathbf{A}, \mathbf{b})$
- The minimum we seek occurs at a **unique** point, which is a vertex of $\mathcal{F}(\mathbf{A}, \mathbf{b})$
 - If a problem is bounded and has multiple optimal solutions with optimal value x_1^* , choose the one with the minimum Euclidean norm $\min\{||x||_2|x \in \mathcal{F}(\mathbf{A}, \mathbf{b}), x_1 = x_1^*\}$
- Each vertex of $\mathcal{F}(\mathbf{A}, \mathbf{b})$ is defined by d or fewer constraints

Notation

Let:

- H denote the set of constraints defined by A and b
- $\mathcal{O}(S)$ be the optimal value of the objective function for the LP defined on $S \subseteq H$
- "Each vertex of $\mathcal{F}(\mathbf{A}, \mathbf{b})$ is defined by d or fewer constraints" implies that $\exists \mathcal{B}(H) \subset H$ of size d or less such that $\mathcal{O}(\mathcal{B}(H)) = \mathcal{O}(H)$. We call this subset $\mathcal{B}(H)$ the basis of H. All other constraints in $H \setminus \mathcal{B}(H)$ are redundant.
- a constraint $h \in H$ be called *extreme* if $\mathcal{O}(H \setminus h) < \mathcal{O}(H)$ (these are the constraints in $\mathcal{B}(H)$).

Algorithm 1: Recursive

- Try to eliminate redundant constraints
- Once our problem has a small number of constraints $(n \leq 9d^2)$, then use Simplex to solve it.
- Build up a smaller set of constraints that eventually include all of the extreme constraints and a small number of redundant constraints
 - Choose $r = d\sqrt{n}$ unchosen constraints of $H \backslash S$ at random
 - Recursively solve the problem on the subset of constraints, $R \cup S$
 - Determine which remaining constraints (V) are violated by this optimal solution
 - Add V to S if it's not too big $(|V| \le 2\sqrt{n})$.
 - Otherwise, if V is too big, then pick r new constraints

We stop once V is empty: we've found a set $S \cup R$ such that no other constraints in H are violated by its optimal solution. This optimal solution x is thus optimal for the original problem.

Recursive Algorithm

Input: A set of constraints H. **Output:** The optimum $\mathcal{B}(H)$

- 1. $S \leftarrow \emptyset; C_d \leftarrow 9d^2$
- 2. If $n \leq C_d$ return Simplex(H)
- 2.1 else repeat:

choose $R \subset H \setminus S$ at random, with $|R| = r = d\sqrt{n}$ $x \leftarrow \text{Recursive}(R \cup S)$ $V \leftarrow \{h \in H | \text{ vertex defined by } x \text{ violates } h\}$ if $|V| \leq 2\sqrt{n}$ then $S \leftarrow S \cup V$ until $V = \emptyset$

2.2 return \boldsymbol{x}

Recursive Algorithm: Proof Roadmap

Questions:

- How do we know that S doesn't get too large before it has all extreme constraints?
- How do we know we will find a set of violated constraints V that's not too big (i.e. the loop terminates quickly)?

Roadmap:

Lemma 1. If the set V is nonempty, then it contains a constraint of $\mathcal{B}(H)$. **Lemma 2.** Let $S \subseteq H$ and let $R \subseteq H \setminus S$ be a random subset of size r, with $|H \setminus S| = m$. Let $V \subset H$ be the set of constraints violated by $\mathcal{O}(R \cup S)$. Then the expected size of V is no more than $\frac{d(m-r+1)}{r-d}$.

And we'll use this to show the following Lemma:

Lemma 3. The probability that any given execution of the loop body is "successful" $(|V| \leq 2\sqrt{n} \text{ for this recursive version of the algorithm})$ is at least 1/2, and so on average, two executions or less are required to obtain a successful one

This will leave us with a running time

 $T(n,d) \le 2dT(3d\sqrt{n},d) + O(d^2n)$ for $n > 9d^2$.

Proof. Lemma 1: When V is nonempty, it contains a constraint of $\mathcal{B}(H)$.

Suppose on the contrary that $V \neq \emptyset$ contains no constraints of $\mathcal{B}(H)$.

Let a point $x \leq y$ if $(x_1, ||x||_2) \leq (y_1, ||y||_2)$ (x is better than y).

Let $x^*(T)$ be the optimal solution over a set of constraints T. Then $x^*(R \cup S)$ satisfies all the constraints of $\mathcal{B}(H)$ (it is feasible), and thus $x^*(R \cup S) \succeq x^*(\mathcal{B}(H))$.

However, since $R \cup S \subset H$, we know that $x^*(R \cup S) \preceq x^*(H) = x^*(\mathcal{B}(H))$. Thus, $x^*(R \cup S)$ has the same obj. fcn value and norm as $x^*(\mathcal{B}(H))$. By the uniqueness of this point, $x^*(R \cup S) = x^*(\mathcal{B}(H)) = x^*(H)$, and $V = \emptyset$. Contradiction!

So, every time V is added to S, at least one extreme constraint of H is added (so we'll do this at most d times). \Box

Proof. Lemma 2: The expected size of V is no more than $\frac{d(m-r+1)}{r-d}$.

First assume problem nondegenerate.

Let $C_H = \{x^*(T \cup S) | T \subseteq H \setminus S\}$, subset of optima.

Let $\mathcal{C}_R = \{x^*(T \cup S) | T \subseteq R\}$

The call Recursive $(R \cup S)$ returns an element $x^*(R \cup S)$:

- an element of \mathcal{C}_H
- unique element of C_R satisfying every constraint in R.

Choose $x \in C_H$ and let v_x = number of constraints in H violated by x. $E[|V|] = E[\sum_{x \in C_H} v_x I(x = x^*(R \cup S))] = \sum_{x \in C_H} v_x P_x$

where

$$I(x = x^*(R \cup S)) = \begin{cases} 1 & \text{if } x = x^*(R \cup S) \\ 0 & \text{otherwise} \end{cases}$$

and $P_x = P(x = x^*(R \cup S))$

How to find P_x ?

Let N = number of subsets of $H \setminus S$ of size r s.t. $x^*(\text{subset}) = x^*(R \cup S)$.

Then
$$N = \binom{m}{r} P_x$$
 and $P_x = \frac{N}{\binom{m}{r}}$.

To find N, note that x^* (subset) $\in C_H$ and x^* (subset) $= x^*(R \cup S)$ only if

- x^* (subset) $\in C_R$ as well
- x^* (subset) satisfies all constraints of R

Therefore, N = No. of subsets of $H \setminus S$ of size r s.t. x^* (subset) $\in C_R$ and x^* (subset) satisfies all constraints of R.

For some such subset of $H \setminus S$ of size r and such that $x^*(\text{subset}) = x^*(R \cup S)$, let T be the *minimal* set of constraints such that $x^*(\text{subset}) = x^*(T \cup S)$.

- x^* (subset) $\in \mathcal{C}_R$ implies $T \subseteq R$
- nondegeneracy implies T is unique and $|T| \leq d$

Let $i_x = |T|$.

In order to have $x^*(T \cup S) = x^*(R \cup S)$ (and thus $x^*(\text{subset}) = x^*(R \cup S)$), when constructing our subset we must choose:

- the i_x constraints of $T \subseteq R$
- $r i_x$ constraints from $H \setminus S \setminus T \setminus V$

Therefore,
$$N = \binom{m-v_x-i_x}{r-i_x}$$
 and $P_x = \frac{\binom{m-v_x-i_x}{r-i_x}}{\binom{m}{r}} \leq \frac{\frac{m-r+1}{r-d}\binom{m-v_x-i_x}{r-i_x-1}}{\binom{m}{r}}$
 $E[|V|] \leq \frac{m-r+1}{r-d} \sum_{x \in \mathcal{C}_H} v_x \frac{\binom{m-v_x-i_x}{r-i_x-1}}{\binom{m}{r}} \leq d\frac{m-r+1}{r-d}$

(where the summand is $E[No. of x \in C_R \text{ violating exactly one constraint in } R] \leq d)$

For the degenerate case, we can perturb the vector b by adding $(\epsilon, \epsilon^2, ..., \epsilon^n)$ and show that the bound on |V| holds for this perturbed problem, and that the perturbed problem has at least as many violated constraints as the original degenerate problem.

Proof. Lemma 3: P(successful execution) $\geq 1/2$; E[Executions til 1st success] ≤ 2 . Here, P(unsuccessful execution) = $P(|V| > 2\sqrt{n})$

$$2E[|V|] \le 2d\frac{m-r+1}{r-d} = 2\frac{n-d\sqrt{n}+1}{\sqrt{n}-1}$$
 (since $r = d\sqrt{n} \le 2\sqrt{n}$)

So, P(unsuccessful execution)= $P(|V| > 2\sqrt{n}) \leq P(|V| > 2E[|V|]) \leq 1/2$, by the Markov Inequality.

 $P(\text{successful execution}) \geq 1/2$, and the expected number of loops until our first successful execution is less than 2.

Recursive Algorithm: Running Time

As long as $n > 9d^2$,

- Have at most d + 1 augmentations to S (successful iterations), with expected 2 tries until success
- With each success, S grows by at most $2\sqrt{n}$, since $|V| \le 2\sqrt{n}$
- After each success, we run the Recursive algorithm on a problem of size $|S\cup R|\le 2d\sqrt{n}+d\sqrt{n}=3d\sqrt{n}$
- After each recursive call, we check for violated constraints, which takes O(nd) each of at most d + 1 times

 $T(n,d) \le 2(d+1)T(3d\sqrt{n},d) + O(d^2n), \text{ for } n > 9d^2$

Algorithm 2: Iterative

- Doesn't call itself, calls Simplex directly each time
- Associates weight w_h to each constraint which determines the probability with which it is selected
- Each time a constraint is violated, its weight is doubled
- Don't add V to a set S; rather reselect R (of size $9d^2$) over and over until it includes the set $\mathcal{B}(H)$

Algorithm 2: Iterative

Input: A set of constraints H. **Output:** The optimum $\mathcal{B}(H)$

- 1. $\forall h \in H, w_h \leftarrow 1; C_d = 9d^2$
- 2. If $n \leq C_d$, return Simplex(H)
- 2.1 else repeat:

choose $R \subset H$ at random, with $|R| = r = C_d$ $x \leftarrow \text{Simplex}(R)$ $V \leftarrow \{h \in H | \text{ vertex defined by } x \text{ violates } h\}$ if $w(V) \leq 2\frac{w(H)}{9d-1}$ then for $h \in V, w_h \leftarrow 2w_h$ until $V = \emptyset$

2.2 return x

Iterative Algorithm: Analysis

- Lemma 1: "If the set V is nonempty, then it contains a constraint of $\mathcal{B}(H)$ " still holds (proof as above with $S = \emptyset$).
- Lemma 2: "Let $S \subseteq H$ and let $R \subseteq H \setminus S$ be a random subset of size r, with $|H \setminus S| = m$. Let $V \subset H$ be the set of constraints violated by $\mathcal{O}(R \cup S)$. Then the expected size of V is no more than $\frac{d(m-r+1)}{r-d}$ " still holds with the following changes. Consider each weight-doubling as the creation of multinodes. So "size" of a set is actually its weight. So we have $S = \emptyset$, and thus $|H \setminus S| = m = w(H)$. This gives us $E[w(V)] \leq \frac{d(w(H) 9d^2 + 1)}{9d^2 d} \leq \frac{w(H)}{9d 1}$
- Lemma 3: If we define a "successful iteration" to be $w(V) \leq 2\frac{w(H)}{9d-1}$, then Lemma 3 holds, and the probability that any given execution of the loop body is "successful" is at least 1/2, and so on average, two executions or less are required to obtain a successful one.

Iterative Algorithm: Running Time

The Iterative Algorithm runs in $O(d^2 n \log n) + (d \log n)O(d)^{d/2+O(1)}$ expected time, as $n \to \infty$, where the constant factors do not depend on d.

First start by showing expected number of loop iterations = $O(d \log n)$

- By Lemma 3.1, at least one extreme constraint $h \in \mathcal{B}(H)$ is doubled during a successful iteration
- Let $d' = |\mathcal{B}(H)|$. After kd' successful executions $w(\mathcal{B}(H)) = \sum_{h \in \mathcal{B}(H)} 2^{n_h}$, where n_h is the number of times h entered V and thus $\sum_{h \in \mathcal{B}(H)} n_h \ge kd'$
- $\sum_{h \in \mathcal{B}(H)} w_h \ge \sum_{h \in \mathcal{B}(H)} 2^k = d' 2^k$
- When members of V are doubled, increase in $w(H) = w(V) \leq \frac{2}{9d-1}$, so after kd' successful iterations, we have

$$w(H) \le n(1 + \frac{2}{9d-1})^{kd'} \le ne^{\frac{2kd'}{9d-1}}$$

• V sure to be empty when $w(\mathcal{B}(H)) > w(H)$ (i.e. $P(\text{Choose } \mathcal{B}(H)) > 1$). This gives us: $k > \frac{\ln(n/d')}{2}$ or $kd' = O(d \log n)$ successful iterations = $O(d \log n)$ iterations

$$k > \frac{\ln(n/d)}{\ln 2 - \frac{2d}{9d-1}}$$
, or $kd' = O(d \log n)$ successful iterations = $O(d \log n)$ iterations.

Within a loop:

- Can select a sample R in O(n) time [Vitter '84]
- Determining violated constraints, V, is O(dn)
- Simplex algorithm takes $d^{O(1)}$ time per vertex, times $\binom{2C_d}{\lfloor d/2 \rfloor}$ vertices [?]. Using Stirling's approximation, this gives us $O(d)^{d/2+O(1)}$ for Simplex

Total running time:

 $O(d\log n) * [O(dn) + O(d)^{d/2 + O(1)}] = O(d^2n\log n) + (d\log n)O(d)^{d/2 + O(1)}$

Algorithm 3: Mixed

- Follow the Recursive Algorithm, but rather than calling itself, call the Iterative Algorithm instead
- Runtime of Recursive: $T(n,d) \leq 2(d+1)T(3d\sqrt{n},d) + O(d^2n)$, for $n > 9d^2$
- In place of $T(3d\sqrt{(n)})$, substitute in runtime of Iterative algorithm on $3d\sqrt{n}$ constraints
- Runtime of Mixed Algorithm: $O(d^2n) + (d^2\log n)O(d)^{d/2+O(1)} + O(d^4\sqrt{n}\log n)$

Contributions of this paper to the field

- Leading term in dependence on n is $O(d^2n)$, an improvement over $O(d^{3d}n)$
- Algorithm can also be applied to integer programming (Jan's talk)
- Algorithm was later applied as overlying algorithm to "incremental" algorithms (Jan's talk) to give a sub-exponential bound for linear programming (rather than using Simplex once $n \leq 9d^2$, use an incremental algorithm)