
Las Vegas Algorithms for Linear (and Integer) Programming

when the Dimension is Small

Kenneth L. Clarkson
presented by Susan Martonosi

September 29, 2003

This presentation is based on: Clarkson, Kenneth L. Las Vegas Algorithms for Linear and Integer Programming When the Dimension
is Small. Journal of the ACM 42(2), March 1995, pp. 488-499. Preliminary version in Proceedings of the 29th Annual IEEE
Symposium on Foundations of Computer Science, 1988.

Outline

• Applications of the algorithm

• Previous work

• Assumptions and notation

• Algorithm 1: “Recurrent Algorithm”

• Algorithm 2: “Iterative Algorithm”

• Algorithm 3: “Mixed Algorithm”

• Contribution of this paper to the field

1

Applications of the Algorithms

Algorithms give a bound that is “good” in n (number of constraints), but “bad” in d
(dimension). So we require the problem to have a small dimension.

•	 Chebyshev approximation: fitting a function by a rational function where both
the numerator and denominator have relatively small degree. The dimension is the
sum of the degrees of the numerator and denominator.

•	 Linear separability: separating two sets of points in d-dimensional space by a
hyperplane

•	 Smallest enclosing circle problem: find a circle of smallest radius that encloses
points in d dimensional space

2

Previous work

• Megiddo: Deterministic algorithm for LP in O(22dn)

• Clarkson; Dyer: O(3d2
n)

• Dyer and Frieze: Randomized algo. with expected time no better than O(d3dn)

• This paper’s “mixed” algo.: Expected time √
O(d2 n) + (log n)O(d)d/2+O(1) + O(d4 n log n) as n → ∞

3

Assumptions

• Minimize x1 subject to Ax ≤ b

• The polyhedron F(A, b) is non-empty and bounded and 0 ∈ F(A, b)

• The minimum we seek occurs at a unique point, which is a vertex of F(A, b)
– If a problem is bounded and has multiple optimal solutions with optimal value

∗ x1, choose the one with the minimum Euclidean norm
∗ min{‖x‖2|x ∈ F(A, b), x1 = x1}

• Each vertex of F(A, b) is defined by d or fewer constraints

4

Notation

Let:

•	 H denote the set of constraints defined by A and b

• O(S) be the optimal value of the objective function for the LP defined on S ⊆ H

•	 “Each vertex of F (A, b) is defined by d or fewer constraints” implies that
∃B(H) ⊂ H of size d or less such that O(B(H)) = O(H). We call this subset
B(H) the basis of H. All other constraints in H\B(H) are redundant.

•	 a constraint h ∈ H be called extreme if O(H\h) < O(H) (these are the
constraints in B(H)).

5

Algorithm 1: Recursive

•	 Try to eliminate redundant constraints
•	 Once our problem has a small number of constraints (n ≤ 9d2), then use Simplex

to solve it.
•	 Build up a smaller set of constraints that eventually include all of the extreme

constraints and a small number of redundant constraints √
–	 Choose r = d n unchosen constraints of H\S at random
–	 Recursively solve the problem on the subset of constraints, R ∪ S
–	 Determine which remaining constraints (V) are violated by this optimal solution √
–	 Add V to S if it’s not too big (|V | ≤ 2 n).
– Otherwise, if V is too big, then pick r new constraints
We stop once V is empty: we’ve found a set S ∪R such that no other constraints
in H are violated by its optimal solution. This optimal solution x is thus optimal
for the original problem.

6

Recursive Algorithm

Input: A set of constraints H. Output: The optimum B(H)

1. S ← ∅; Cd ← 9d2

2. If n ≤ Cd return Simplex(H)
2.1 else repeat: √

choose R ⊂ H\S at random, with |R| = r = d n

x ←Recursive(R ∪ S)

V ← {h ∈ H| vertex defined by x violates h}
√
if |V | ≤ 2 n then S ← S ∪ V

until V = ∅

2.2 return x

7

Recursive Algorithm: Proof Roadmap

Questions:

•	 How do we know that S doesn’t get too large before it has all extreme constraints?

•	 How do we know we will find a set of violated constraints V that’s not too big (i.e.
the loop terminates quickly)?

Roadmap:
Lemma 1. If the set V is nonempty, then it contains a constraint of B(H).

Lemma 2. Let S ⊆ H and let R ⊆ H\S be a random subset of size r, with |H\S| =

m. Let V ⊂ H be the set of constraints violated by O(R ∪ S). Then the expected size

of V is no more than d(m−r+1) .
r−d

And we’ll use this to show the following Lemma:

8

Lemma 3. The probability that any given execution of the loop body is ”successful” √
(|V | ≤ 2 n for this recursive version of the algorithm) is at least 1/2, and so on
average, two executions or less are required to obtain a successful one

This will leave us with a running time

√
T (n, d) ≤ 2dT (3d n, d) + O(d2 n) for n > 9d2 .

9

Recursive Algorithm: Proof of Lemma 1

Proof. Lemma 1: When V is nonempty, it contains a constraint of B(H).

Suppose on the contrary that V �= ∅ contains no constraints of B(H).

L
Let a point x � y if (x1, ‖x‖2) ≤ (y1, ‖y‖2) (x is better than y).

∗Let x ∗ (T) be the optimal solution over a set of constraints T . Then x (R ∪S) satisfies
∗all the constraints of B(H) (it is feasible), and thus x ∗ (R ∪ S) � x (B(H)).

∗ ∗However, since R ∪ S ⊂ H, we know that x ∗ (R ∪ S) � x (H) = x (B(H)). Thus,
∗ x (R ∪ S) has the same obj. fcn value and norm as x ∗ (B(H)). By the uniqueness of

∗ ∗this point, x ∗ (R ∪ S) = x (B(H)) = x (H), and V = ∅. Contradiction!
So, every time V is added to S, at least one extreme constraint of H is added (so we’ll
do this at most d times).

10

Recursive Algorithm: Proof of Lemma 2

Proof. Lemma 2: The expected size of V is no more than d(m−r+1) . r−d

First assume problem nondegenerate.

Let CH = {x ∗ (T ∪ S)|T ⊆ H\S}, subset of optima.

Let CR = {x ∗ (T ∪ S)|T ⊆ R}

The call Recursive(R ∪ S) returns an element x ∗ (R ∪ S):

• an element of CH

• unique element of CR satisfying every constraint in R.

11

�

Recursive Algorithm: Proof of Lemma 2

Choose x ∈ CH and let vx = number of constraints in H violated by x. � ∗ �
E[|V |] = E[x∈CH

vxI(x = x (R ∪ S))] = vxPxx∈CH

where

∗ 1 if x = x ∗ (R ∪ S)
I(x = x (R ∪ S)) =

0 otherwise

and Px = P (x = x ∗ (R ∪ S))

How to find Px?

12

� �

Recursive Algorithm: Proof of Lemma 2

∗Let N = number of subsets of H\S of size r s.t. x ∗ (subset) = x (R ∪ S).

m NThen N = Px and Px = m . r (r)

∗To find N , note that x ∗ (subset) ∈ CH and x (subset) = x ∗ (R ∪ S) only if

∗ • x (subset) ∈ CR as well
∗ • x (subset) satisfies all constraints of R

∗Therefore, N = No. of subsets of H\S of size r s.t. x ∗ (subset) ∈ CR and x (subset)
satisfies all constraints of R.

13

Recursive Algorithm: Proof of Lemma 2

∗For some such subset of H\S of size r and such that x ∗ (subset) = x (R ∪ S), let T
∗be the minimal set of constraints such that x ∗ (subset) = x (T ∪ S).

∗ • x (subset) ∈ CR implies T ⊆ R

• nondegeneracy implies T is unique and |T | ≤ d

Let ix = |T |.
∗ ∗In order to have x ∗ (T ∪ S) = x (R ∪ S) (and thus x ∗ (subset) = x (R ∪ S)), when

constructing our subset we must choose:

• the ix constraints of T ⊆ R

• r − ix constraints from H\S\T \V

14

� �
r−ix) m−r+1(m−vx−ix(m−vx−ix

Therefore, N = m−vx−ix and Px = (m ≤ r−d r−ix−1)
(mr−ix r) r)

(m−vx−ix � r−ix−1) ≤ dm−r+1E[|V |] ≤ m−r+1
x∈CH

vx (mr−d
r) r−d

(where the summand is E[No. of x ∈ CR violating exactly one constraint in R] ≤ d)

For the degenerate case, we can perturb the vector b by adding (ε, ε2, ..., εn) and
show that the bound on |V | holds for this perturbed problem, and that the perturbed
problem has at least as many violated constraints as the original degenerate problem.

15

Recursive Algorithm: Proof of Lemma 3

Proof. Lemma 3: P(successful execution) ≥ 1/2; E[Executions til 1st success] ≤ 2.

√
Here, P(unsuccessful execution) = P (|V | > 2 n)

√ √
2E[|V |] ≤ 2dm−r+1 = 2n−d n+1 (since r = d

√
n) ≤ 2 n√

r−d n−1

√
So, P(unsuccessful execution)= P (|V | > 2 n) ≤ P (|V | > 2E[|V |]) ≤ 1/2, by
the Markov Inequality.

P(successful execution) ≥ 1/2, and the expected number of loops until our first
successful execution is less than 2.

16

Recursive Algorithm: Running Time

As long as n > 9d2 ,

•	 Have at most d+1 augmentations to S (succesful iterations), with expected 2 tries
until success √	 √ •	 With each success, S grows by at most 2 n, since |V | ≤ 2 n

•	 After each success, we run the Recursive algorithm on a problem of size |S ∪R| ≤√ √ √
2d n + d n = 3d n

•	 After each recursive call, we check for violated constraints, which takes O(nd) each
of at most d + 1 times

√
T (n, d) ≤ 2(d + 1)T (3d n, d) + O(d2 n), for n > 9d2

17

Algorithm 2: Iterative

•	 Doesn’t call itself, calls Simplex directly each time

•	 Associates weight wh to each constraint which determines the probability with
which it is selected

•	 Each time a constraint is violated, its weight is doubled

•	 Don’t add V to a set S; rather reselect R (of size 9d2) over and over until it includes
the set B(H)

18

Algorithm 2: Iterative

Input: A set of constraints H. Output: The optimum B(H)

1. ∀h ∈ H, wh ← 1; Cd = 9d2

2. If n ≤ Cd, return Simplex(H)
2.1 else repeat:

choose R ⊂ H at random, with |R| = r = Cd

x ←Simplex(R)

V ← {h ∈ H| vertex defined by x violates h}

w(H)if w(V) ≤ 29d−1 then for h ∈ V , wh ← 2wh

until V = ∅

2.2 return x

19

Iterative Algorithm: Analysis

•	 Lemma 1: “If the set V is nonempty, then it contains a constraint of B(H)” still
holds (proof as above with S = ∅).

•	 Lemma 2: “Let S ⊆ H and let R ⊆ H\S be a random subset of size r, with
|H\S| = m. Let V ⊂ H be the set of constraints violated by O(R ∪ S). Then
the expected size of V is no more than d(m−r+1) ” still holds with the following r−d
changes. Consider each weight-doubling as the creation of multinodes. So “size” of
a set is actually its weight. So we have S = ∅, and thus |H\S| = m = w(H).

+1	 ≤ w(H)This gives us E[w(V)] ≤ d(w(H)−9d2

9d−19d2−d

•	 Lemma 3: If we define a “successful iteration” to be w(V) ≤ 2w(H) , then Lemma 3 9d−1
holds, and the probability that any given execution of the loop body is ”successful”
is at least 1/2, and so on average, two executions or less are required to obtain a
successful one.

20

� �

�	 �

′

Iterative Algorithm: Running Time

The Iterative Algorithm runs in O(d2 n log n)+(d log n)O(d)d/2+O(1) expected time,
as n → ∞, where the constant factors do not depend on d.

First start by showing expected number of loop iterations = O(d log n)

•	 By Lemma 3.1, at least one extreme constraint h ∈ B(H) is doubled during a
successful iteration

•	 Let d′ = |B(H)|. After kd′ successful executions w(B(H)) = 2nh ,h∈B(H)

where nh is the number of times h entered V and thus h∈B(H) nh	 ≥ kd′

•	 h∈B(H) wh ≥ h∈B(H) 2
k = d′2k

2
•	 When members of V are doubled, increase in w(H) = w(V) ≤ 9d−1 , so after kd′

successful iterations, we have
′ 2kd

9d
2
−1)

kd 9d−1w(H) ≤ n(1 + ≤ ne

21

� �

•	 V sure to be empty when w(B(H)) > w(H) (i.e. P (Choose B(H)) > 1). This
gives us:

k > ln(n/d′) , or kd′ = O(d log n) successful iterations = O(d log n) iterations.

ln 2− 2d

9d−1

Within a loop:

•	 Can select a sample R in O(n) time [Vitter ’84]
•	 Determining violated constraints, V , is O(dn)

2Cd•	 Simplex algorithm takes dO(1) time per vertex, times �d/2�
vertices [?]. Using

Stirling’s approximation, this gives us O(d)d/2+O(1) for Simplex

Total running time:

O(d log n) ∗ [O(dn) + O(d)d/2+O(1)] = O(d2 n log n) + (d log n)O(d)d/2+O(1)

22

Algorithm 3: Mixed

•	 Follow the Recursive Algorithm, but rather than calling itself, call the Iterative
Algorithm instead √ •	 Runtime of Recursive: T (n, d) ≤ 2(d + 1)T (3d n, d) + O(d2 n), for n > 9d2 �	 √ •	 In place of T (3d (n), substitute in runtime of Iterative algorithm on 3d n
constraints √ •	 Runtime of Mixed Algorithm: O(d2 n)+(d2 log n)O(d)d/2+O(1)+O(d4 n log n)

23

Contributions of this paper to the field

•	 Leading term in dependence on n is O(d2 n), an improvement over O(d3dn)

•	 Algorithm can also be applied to integer programming (Jan’s talk)
•	 Algorithm was later applied as overlying algorithm to “incremental” algorithms

(Jan’s talk) to give a sub-exponential bound for linear programming (rather than
using Simplex once n ≤ 9d2, use an incremental algorithm)

24

