Las Vegas Algorithms for Linear (and Integer) Programming when the Dimension is Small

Kenneth L. Clarkson
presented by Susan Martonosi

September 29, 2003

[^0]
Outline

- Applications of the algorithm
- Previous work
- Assumptions and notation
- Algorithm 1: "Recurrent Algorithm"
- Algorithm 2: "Iterative Algorithm"
- Algorithm 3: "Mixed Algorithm"
- Contribution of this paper to the field

Applications of the Algorithms

Algorithms give a bound that is "good" in n (number of constraints), but "bad" in d (dimension). So we require the problem to have a small dimension.

- Chebyshev approximation: fitting a function by a rational function where both the numerator and denominator have relatively small degree. The dimension is the sum of the degrees of the numerator and denominator.
- Linear separability: separating two sets of points in d-dimensional space by a hyperplane
- Smallest enclosing circle problem: find a circle of smallest radius that encloses points in d dimensional space

Previous work

- Megiddo: Deterministic algorithm for LP in $O\left(2^{2^{d}} n\right)$
- Clarkson; Dyer: $O\left(3^{d^{2}} n\right)$
- Dyer and Frieze: Randomized algo. with expected time no better than $O\left(d^{3 d} n\right)$
- This paper's "mixed" algo.: Expected time
$O\left(d^{2} n\right)+(\log n) O(d)^{d / 2+O(1)}+O\left(d^{4} \sqrt{n} \log n\right)$ as $n \rightarrow \infty$

Assumptions

- Minimize x_{1} subject to $\mathbf{A x} \leq \mathbf{b}$
- The polyhedron $\mathcal{F}(\mathbf{A}, \mathbf{b})$ is non-empty and bounded and $0 \in \mathcal{F}(\mathbf{A}, \mathbf{b})$
- The minimum we seek occurs at a unique point, which is a vertex of $\mathcal{F}(\mathbf{A}, \mathbf{b})$
- If a problem is bounded and has multiple optimal solutions with optimal value x_{1}^{*}, choose the one with the minimum Euclidean norm $\min \left\{\|x\|_{2} \mid x \in \mathcal{F}(\mathbf{A}, \mathbf{b}), x_{1}=x_{1}^{*}\right\}$
- Each vertex of $\mathcal{F}(\mathbf{A}, \mathbf{b})$ is defined by d or fewer constraints

Let:

- H denote the set of constraints defined by A and b
- $\mathcal{O}(S)$ be the optimal value of the objective function for the LP defined on $S \subseteq H$
- "Each vertex of $\mathcal{F}(\mathbf{A}, \mathbf{b})$ is defined by d or fewer constraints" implies that $\exists \mathcal{B}(H) \subset H$ of size d or less such that $\mathcal{O}(\mathcal{B}(H))=\mathcal{O}(H)$. We call this subset $\mathcal{B}(H)$ the basis of H. All other constraints in $H \backslash \mathcal{B}(H)$ are redundant.
- a constraint $h \in H$ be called extreme if $\mathcal{O}(H \backslash h)<\mathcal{O}(H)$ (these are the constraints in $\mathcal{B}(H)$).

Algorithm 1: Recursive

- Try to eliminate redundant constraints
- Once our problem has a small number of constraints ($n \leq 9 d^{2}$), then use Simplex to solve it.
- Build up a smaller set of constraints that eventually include all of the extreme constraints and a small number of redundant constraints
- Choose $r=d \sqrt{n}$ unchosen constraints of $H \backslash S$ at random
- Recursively solve the problem on the subset of constraints, $R \cup S$
- Determine which remaining constraints (V) are violated by this optimal solution
- Add V to S if it's not too big $(|V| \leq 2 \sqrt{n})$.
- Otherwise, if V is too big, then pick r new constraints

We stop once V is empty: we've found a set $S \cup R$ such that no other constraints in H are violated by its optimal solution. This optimal solution x is thus optimal for the original problem.

Recursive Algorithm

Input: A set of constraints H. Output: The optimum $\mathcal{B}(H)$

1. $S \leftarrow \emptyset ; C_{d} \leftarrow 9 d^{2}$
2. If $n \leq C_{d}$ return $\operatorname{Simplex}(H)$
2.1 else repeat:
choose $R \subset H \backslash S$ at random, with $|R|=r=d \sqrt{n}$
$x \leftarrow \operatorname{Recursive}(R \cup S)$
$V \leftarrow\{h \in H \mid$ vertex defined by x violates $h\}$
if $|V| \leq 2 \sqrt{n}$ then $S \leftarrow S \cup V$
until $V=\emptyset$
2.2 return x

Recursive Algorithm: Proof Roadmap

Questions:

- How do we know that S doesn't get too large before it has all extreme constraints?
- How do we know we will find a set of violated constraints V that's not too big (i.e. the loop terminates quickly)?

Roadmap:
Lemma 1. If the set V is nonempty, then it contains a constraint of $\mathcal{B}(H)$.
Lemma 2. Let $S \subseteq H$ and let $R \subseteq H \backslash S$ be a random subset of size r, with $|H \backslash S|=$ m. Let $V \subset H$ be the set of constraints violated by $\mathcal{O}(R \cup S)$. Then the expected size of V is no more than $\frac{d(m-r+1)}{r-d}$.

And we'll use this to show the following Lemma:

Lemma 3. The probability that any given execution of the loop body is "successful" $(|V| \leq 2 \sqrt{n}$ for this recursive version of the algorithm) is at least $1 / 2$, and so on average, two executions or less are required to obtain a successful one

This will leave us with a running time
$T(n, d) \leq 2 d T(3 d \sqrt{n}, d)+O\left(d^{2} n\right)$ for $n>9 d^{2}$.

Recursive Algorithm: Proof of Lemma 1

Proof. Lemma 1: When V is nonempty, it contains a constraint of $\mathcal{B}(H)$.
Suppose on the contrary that $V \neq \emptyset$ contains no constraints of $\mathcal{B}(H)$.
Let a point $x \preceq y$ if $\left(x_{1},\|x\|_{2}\right) \stackrel{L}{\leq}\left(y_{1},\|y\|_{2}\right)(x$ is better than $y)$.
Let $x^{*}(T)$ be the optimal solution over a set of constraints T. Then $x^{*}(R \cup S)$ satisfies all the constraints of $\mathcal{B}(H)$ (it is feasible), and thus $x^{*}(R \cup S) \succeq x^{*}(\mathcal{B}(H))$.

However, since $R \cup S \subset H$, we know that $x^{*}(R \cup S) \preceq x^{*}(H)=x^{*}(\mathcal{B}(H))$. Thus, $x^{*}(R \cup S)$ has the same obj. fcn value and norm as $x^{*}(\mathcal{B}(H))$. By the uniqueness of this point, $x^{*}(R \cup S)=x^{*}(\mathcal{B}(H))=x^{*}(H)$, and $V=\emptyset$. Contradiction!

So, every time V is added to S, at least one extreme constraint of H is added (so we'll do this at most d times).

Recursive Algorithm: Proof of Lemma 2

Proof. Lemma 2: The expected size of V is no more than $\frac{d(m-r+1)}{r-d}$.
First assume problem nondegenerate.
Let $\mathcal{C}_{H}=\left\{x^{*}(T \cup S) \mid T \subseteq H \backslash S\right\}$, subset of optima.
Let $\mathcal{C}_{R}=\left\{x^{*}(T \cup S) \mid T \subseteq R\right\}$
The call Recursive $(R \cup S)$ returns an element $x^{*}(R \cup S)$:

- an element of \mathcal{C}_{H}
- unique element of \mathcal{C}_{R} satisfying every constraint in R.

Recursive Algorithm: Proof of Lemma 2

Choose $x \in \mathcal{C}_{H}$ and let $v_{x}=$ number of constraints in H violated by x.

$$
E[|V|]=E\left[\sum_{x \in \mathcal{C}_{H}} v_{x} I\left(x=x^{*}(R \cup S)\right)\right]=\sum_{x \in \mathcal{C}_{H}} v_{x} P_{x}
$$

where

$$
I\left(x=x^{*}(R \cup S)\right)= \begin{cases}1 & \text { if } x=x^{*}(R \cup S) \\ 0 & \text { otherwise }\end{cases}
$$

and $P_{x}=P\left(x=x^{*}(R \cup S)\right)$
How to find P_{x} ?

Recursive Algorithm: Proof of Lemma 2

Let $N=$ number of subsets of $H \backslash S$ of size r s.t. $x^{*}($ subset $)=x^{*}(R \cup S)$.
Then $N=\binom{m}{r} P_{x}$ and $P_{x}=\frac{N}{\binom{m}{r}}$.
To find N, note that x^{*} (subset) $\in \mathcal{C}_{H}$ and x^{*} (subset) $=x^{*}(R \cup S)$ only if

- x^{*} (subset) $\in \mathcal{C}_{R}$ as well
- x^{*} (subset) satisfies all constraints of R

Therefore, $N=$ No. of subsets of $H \backslash S$ of size r s.t. x^{*} (subset) $\in \mathcal{C}_{R}$ and x^{*} (subset) satisfies all constraints of R.

Recursive Algorithm: Proof of Lemma 2

For some such subset of $H \backslash S$ of size r and such that x^{*} (subset) $=x^{*}(R \cup S)$, let T be the minimal set of constraints such that $x^{*}($ subset $)=x^{*}(T \cup S)$.

- $x^{*}($ subset $) \in \mathcal{C}_{R}$ implies $T \subseteq R$
- nondegeneracy implies T is unique and $|T| \leq d$

Let $i_{x}=|T|$.
In order to have $x^{*}(T \cup S)=x^{*}(R \cup S)$ (and thus x^{*} (subset) $=x^{*}(R \cup S)$), when constructing our subset we must choose:

- the i_{x} constraints of $T \subseteq R$
- $r-i_{x}$ constraints from $H \backslash S \backslash T \backslash V$

Therefore, $N=\binom{m-v_{x}-i_{x}}{r-i_{x}}$ and $P_{x}=\frac{\binom{m-v_{x}-i_{x}}{r-i_{x}}}{\binom{m}{r}} \leq \frac{\frac{m-r+1}{r-d}\binom{m-v_{x}-i_{x}}{r-i_{x}-1}}{\binom{m}{r}}$ $E[|V|] \leq \frac{m-r+1}{r-d} \sum_{x \in \mathcal{C}_{H}} v_{x} \frac{\binom{m-v_{x}-i_{x}}{r-i_{x}-1}}{\binom{m}{r}} \leq d \frac{m-r+1}{r-d}$
(where the summand is $E\left[\right.$ No. of $x \in \mathcal{C}_{R}$ violating exactly one constraint in R$] \leq d$)
For the degenerate case, we can perturb the vector b by adding $\left(\epsilon, \epsilon^{2}, \ldots, \epsilon^{n}\right)$ and show that the bound on $|V|$ holds for this perturbed problem, and that the perturbed problem has at least as many violated constraints as the original degenerate problem.

Recursive Algorithm: Proof of Lemma 3

Proof. Lemma 3: $\mathrm{P}($ successful execution $) \geq 1 / 2 ; \mathrm{E}[$ Executions til 1st success] ≤ 2.
Here, $\mathrm{P}($ unsuccessful execution $)=P(|V|>2 \sqrt{n})$
$2 E[|V|] \leq 2 d \frac{m-r+1}{r-d}=2 \frac{n-d \sqrt{n}+1}{\sqrt{n}-1}($ since $r=d \sqrt{n}) \leq 2 \sqrt{n}$
So, $\mathrm{P}($ unsuccessful execution $)=P(|V|>2 \sqrt{n}) \leq P(|V|>2 E[|V|]) \leq 1 / 2$, by the Markov Inequality.
$\mathrm{P}($ successful execution $) \geq 1 / 2$, and the expected number of loops until our first successful execution is less than 2.

Recursive Algorithm: Running Time

As long as $n>9 d^{2}$,

- Have at most $d+1$ augmentations to S (succesful iterations), with expected 2 tries until success
- With each success, S grows by at most $2 \sqrt{n}$, since $|V| \leq 2 \sqrt{n}$
- After each success, we run the Recursive algorithm on a problem of size $|S \cup R| \leq$ $2 d \sqrt{n}+d \sqrt{n}=3 d \sqrt{n}$
- After each recursive call, we check for violated constraints, which takes $O(n d)$ each of at most $d+1$ times
$T(n, d) \leq 2(d+1) T(3 d \sqrt{n}, d)+O\left(d^{2} n\right)$, for $n>9 d^{2}$

Algorithm 2: Iterative

- Doesn't call itself, calls Simplex directly each time
- Associates weight w_{h} to each constraint which determines the probability with which it is selected
- Each time a constraint is violated, its weight is doubled
- Don't add V to a set S; rather reselect R (of size $9 d^{2}$) over and over until it includes the set $\mathcal{B}(H)$

Algorithm 2: Iterative

Input: A set of constraints H. Output: The optimum $\mathcal{B}(H)$

1. $\forall h \in H, w_{h} \leftarrow 1 ; C_{d}=9 d^{2}$
2. If $n \leq C_{d}$, return Simplex (H)
2.1 else repeat:
choose $R \subset H$ at random, with $|R|=r=C_{d}$
$x \leftarrow \operatorname{Simplex}(R)$
$V \leftarrow\{h \in H \mid$ vertex defined by x violates $h\}$
if $w(V) \leq 2 \frac{w(H)}{9 d-1}$ then for $h \in V, w_{h} \leftarrow 2 w_{h}$ until $V=\emptyset$
2.2 return x

Iterative Algorithm: Analysis

- Lemma 1: "If the set V is nonempty, then it contains a constraint of $\mathcal{B}(H)$ " still holds (proof as above with $S=\emptyset$).
- Lemma 2: "Let $S \subseteq H$ and let $R \subseteq H \backslash S$ be a random subset of size r, with $|H \backslash S|=m$. Let $V \subset H$ be the set of constraints violated by $\mathcal{O}(R \cup S)$. Then the expected size of V is no more than $\frac{d(m-r+1)}{r-d}$ " still holds with the following changes. Consider each weight-doubling as the creation of multinodes. So "size" of a set is actually its weight. So we have $S=\emptyset$, and thus $|H \backslash S|=m=w(H)$. This gives us $E[w(V)] \leq \frac{d\left(w(H)-9 d^{2}+1\right.}{9 d^{2}-d} \leq \frac{w(H)}{9 d-1}$
- Lemma 3: If we define a "successful iteration" to be $w(V) \leq 2 \frac{w(H)}{9 d-1}$, then Lemma 3 holds, and the probability that any given execution of the loop body is "successful" is at least $1 / 2$, and so on average, two executions or less are required to obtain a successful one.

Iterative Algorithm: Running Time

The Iterative Algorithm runs in $O\left(d^{2} n \log n\right)+(d \log n) O(d)^{d / 2+O(1)}$ expected time, as $n \rightarrow \infty$, where the constant factors do not depend on d.

First start by showing expected number of loop iterations $=O(d \log n)$

- By Lemma 3.1, at least one extreme constraint $h \in \mathcal{B}(H)$ is doubled during a successful iteration
- Let $d^{\prime}=|\mathcal{B}(H)|$. After $k d^{\prime}$ successful executions $w(\mathcal{B}(H))=\sum_{h \in \mathcal{B}(H)} 2^{n_{h}}$, where n_{h} is the number of times h entered V and thus $\sum_{h \in \mathcal{B}(H)} n_{h} \geq k d^{\prime}$
- $\sum_{h \in \mathcal{B}(H)} w_{h} \geq \sum_{h \in \mathcal{B}(H)} 2^{k}=d^{\prime} 2^{k}$
- When members of V are doubled, increase in $w(H)=w(V) \leq \frac{2}{9 d-1}$, so after $k d^{\prime}$ successful iterations, we have

$$
w(H) \leq n\left(1+\frac{2}{9 d-1}\right)^{k d^{\prime}} \leq n e^{\frac{2 k d^{\prime}}{9 d-1}}
$$

- V sure to be empty when $w(\mathcal{B}(H))>w(H)$ (i.e. $P($ Choose $\mathcal{B}(H))>1)$. This gives us:
$k>\frac{\ln \left(n / d^{\prime}\right)}{\ln 2-\frac{2 d}{9 d-1}}$, or $k d^{\prime}=O(d \log n)$ successful iterations $=O(d \log n)$ iterations.
Within a loop:
- Can select a sample R in $O(n)$ time [Vitter '84]
- Determining violated constraints, V, is $O(d n)$
- Simplex algorithm takes $d^{O(1)}$ time per vertex, times $\binom{2 C_{d}}{\lfloor d / 2\rfloor}$ vertices [?]. Using Stirling's approximation, this gives us $O(d)^{d / 2+O(1)}$ for Simplex

Total running time:
$O(d \log n) *\left[O(d n)+O(d)^{d / 2+O(1)}\right]=O\left(d^{2} n \log n\right)+(d \log n) O(d)^{d / 2+O(1)}$

Algorithm 3: Mixed

- Follow the Recursive Algorithm, but rather than calling itself, call the Iterative Algorithm instead
- Runtime of Recursive: $T(n, d) \leq 2(d+1) T(3 d \sqrt{n}, d)+O\left(d^{2} n\right)$, for $n>9 d^{2}$
- In place of $T(3 d \sqrt{ }(n)$, substitute in runtime of Iterative algorithm on $3 d \sqrt{n}$ constraints
- Runtime of Mixed Algorithm: $O\left(d^{2} n\right)+\left(d^{2} \log n\right) O(d)^{d / 2+O(1)}+O\left(d^{4} \sqrt{n} \log n\right)$

Contributions of this paper to the field

- Leading term in dependence on n is $O\left(d^{2} n\right)$, an improvement over $O\left(d^{3 d} n\right)$
- Algorithm can also be applied to integer programming (Jan's talk)
- Algorithm was later applied as overlying algorithm to "incremental" algorithms (Jan's talk) to give a sub-exponential bound for linear programming (rather than using Simplex once $n \leq 9 d^{2}$, use an incremental algorithm)

[^0]: This presentation is based on: Clarkson, Kenneth L. Las Vegas Algorithms for Linear and Integer Prograrming When the Dimension is Small. Journal of the ACM 42(2), March 1995, pp. 488-499. Preliminary version in Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, 1988.

