Simple statistics II

Statistics has 3+ components

- Probability calculations
- Descriptive statistics
- Data analysis
- Statistical inference
- Inferential statistics
- Models

Inferential statistics, Why?

- Our measurements have error
- Random error
- Measurement error
- Intervening variables
- Etc.

Inferential statistics, Why?

- We want to make inferences beyond our sample
- Statistics organizes \& set the "rules" by which we can draw conclusions
- We usually test things we think will "work"
- Statistics help protect us against ourselves

Going beyond descriptions

- The main issue is variance!
- The question we ask is how large or likely is the effect relative to the variance we have.

Sampling \& probability

- In Binomial distributions there are two possible outcomes.
- What is the probability for 5 boys
- What is the probability for 4 out of 5 being boys?
- $P(r$ successes $)=(n!/ r!) * p^{r} * q^{n-r}$

Hypothesis testing \#1

- Using the binomial distribution
- If a family has 4 boys, are they likely to have a boy or girl next time?
- What about 5 or 6 boys?

From binomial to normal

As N increases and $p=q$, the binomial becomes close to the normal

Another test

- Usually 6\% of MIT students pass 15.301.
- At Sloan (out of 400 students) 42 have passed 15.301.
- Is this random? Are the Sloan students better?

What do we need for an answer:

- Expected mean ()=np
- Variance $\left(\boldsymbol{\sigma}^{\mathbf{2}}\right)=\mathbf{n p q}$
- $\mathbf{Z}=(\mathbf{x i}-\quad) / \boldsymbol{\sigma}$

○
○ $=400 * 6 / 100=24 ; \sigma=4.8$
$\circ \mathrm{Z}(41.5)=(41.5-24) / 4.8=3.64$
\circ Using the normal table, $\mathrm{z}=3.64=\mathrm{p} 0.0001$

Statistical tests

- T-test
- ANOVA
- Linear Regression
- Non-parametric tests

One sample t test

$$
\boldsymbol{t}=\frac{\text { Mean diff } \xrightarrow[-]{M}^{\sum^{\frac{\Sigma(x i-1}{n-1}} / \sqrt{n}}}{\sqrt{2}}
$$

Standard deviation

What do you do with "t"

- Compare it to the "t table"

○

- When there is more data, the t distribution gets closer to normal

Example:

Observation	Aggressive	$\mathrm{xi}-\mu$	$(\mathrm{xi}-\mu)^{2}$
1	24	4	16
2	22	2	4
3	23	3	9
4	18	-2	4
5	17	-3	9
6	16	-4	16
7	20	0	0
all	140	0	58

Example:

- H0: average is 16
- H1: average $\neq 16$

$$
\begin{aligned}
\sigma & =\sqrt{\frac{\sum_{2 x i t}()^{2}}{n-1}}=3.11 \\
t & =\frac{-m}{\sigma / \sqrt{ } n}=3.42
\end{aligned}
$$

two samples t test

Test for independent samples

$$
t=\frac{(1-2)-(M 1-M 2)}{\sqrt{\frac{n 1 \sigma 1^{2}+n 2 \sigma 2^{2}}{n 1+n 2-2}}\left(\frac{\mathrm{n} 1+\mathrm{n} 2}{\mathrm{n} 1 \times \mathrm{n} 2}\right)}
$$

Example

- Who eats more lollipops males of females?
- 7 females; 5 males followed for a month
- Females: $=27, \sigma^{2}=29.2$
- Males: $=19, \sigma^{2}=24.57$

0

- Is there a difference?

Calculating ...

$$
t=\frac{(27-19)-(0)}{\sqrt{\frac{5 \times 24.57+7 \times 29.2}{5+7-2}\left(\frac{5+7}{5 \times 7}\right)}}
$$

$$
=2.42
$$

two samples t test

Test for dependent samples

$\boldsymbol{t}=\frac{\text { (within diff) }-(\text { expected diff })}{\text { sd of diff } / \sqrt{ } \mathrm{n}}$

Example

- Does the sun creates freckles?
- Each ss has one side of the body in the sun
\circ
- H 0 sun side \leq non-sun side
- H1 sun side $>$ non-sun side

Data

Subject	sun	shade	diff	$d-\mu$	$(d-\mu)^{2}$
1	6	8	-2	-3	9
2	12	5	7	6	36
3	3	2	1	0	0
4	4	6	-2	-3	9
5	7	0	7	6	36
6	9	10	-1	-2	4
7	4	4	0	-1	1
8	0	2	-2	-3	9
9	4	3	1	0	0
all			$\mathbf{9}$	$\mathbf{0}$	$\mathbf{1 0 4}$

Calculating ...

$$
\begin{aligned}
& \sigma=\sqrt{\frac{104}{8}}=3.606 \\
& t=\frac{(1)-(0)}{3.606 / \sqrt{ } 9}=0.831
\end{aligned}
$$

Summary

- t test as an example of
inferential statistics
- Mean differences relative to variance

