## ㅍIIIIIII <br> MITSIoan <br> management <br> 15.401 Finance Theory

MIT Sloan MBA Program

# Andrew W. Lo <br> Harris \& Harris Group Professor, MIT Sloan School 

Lectures 18-20: Capital Budgeting

## Critical Concepts

- NPV Rule
- Cash Flow Computations
- Discount Rates
- Discount Rates Over Time
- Project Interactions
- Alternatives to the NPV Rule
- The Practice of Capital Budgeting
- Key Points


## Readings

- Brealey, Myers, and Allen Chapter 5-6, 9, 22
- Graham and Harvey (2001)


## Objective: Increase Firm's Current Market Value

- Implication: take projects with positive NPV
- Project has cashflows of:

$$
\left\{C F_{0}, C F_{1}, \cdots, C F_{T}\right\}
$$

- Its current market value is

$$
N P V=C F_{0}+\frac{C F_{1}}{1+r_{1}}+\cdots+\frac{C F_{T}}{\left(1+r_{T}\right)^{T}}
$$

- This is the addition to the firm's market value by the project (recall value additivity).


## Investment Criteria:

- For a single project, take it if and only if its NPV is positive
- For many independent projects, take all those with positive NPV
- For mutually exclusive projects, take the one with positive and highest NPV

To Compute the NPV of a Project, We Need To Consider:

- Cash flows
- Discount rates
- Strategic options


## Cash Flow Calculations

## Main Points:

1. Use cash flows, not accounting earnings
2. Use after-tax cashflows
3. Use cash flows attributable to the project (compare firm value with and without the project):

- Use incremental cash flows
- Forget sunk costs: bygones are bygones
- Include investment in working capital as capital expenditure
- Include opportunity costs of using existing equipment, facilities, etc.
- Correct for biases from fighting for resources inside firm


## Cash Flow Calculations

## Consider Project Cashflows:

$$
\begin{aligned}
C F= & {[\text { Project Cash Inflows }]-[\text { Project Cash Outflows }] } \\
= & {[\text { Operating Revenues }] } \\
& -[\text { Operating Expenses without depreciation }] \\
& -[\text { Capital Expenditures }] \\
& -[\text { Income Taxes }]
\end{aligned}
$$

- Defining operating profit by

$$
\begin{aligned}
\text { Operating Profit }= & \text { Operating Revenues } \\
& - \text { Operating Expenses w/o Depreciation }
\end{aligned}
$$

## Cash Flow Calculations

- The income taxes are

$$
\begin{aligned}
{[\text { Project Income Taxes }]=} & {[\text { Tax Rate }][\text { Operating Profit }] } \\
& -[\text { Tax Rate }][\text { Depreciation }]
\end{aligned}
$$

- Note that accounting depreciation does affect cash flows because it reduces the company's tax bill.
- Let $\tau$ denote the "effective" tax rate. Then

$$
\begin{aligned}
C F= & (1-\tau)[\text { Operating Profits }]-\text { [Capital Expenditures }] \\
& +(\tau)[\text { Depreciation }]
\end{aligned}
$$

## Cash Flow Calculations

## Example: Capital Expenditure and Accounting Earnings vs. Cash

 FlowsA machine purchased for $\$ 1,000,000$ with a life of 10 years generates annual revenues of $\$ 300,000$ and operating expenses of $\$ 100,000$. Assume that machine will be depreciated over 10 years using straightline depreciation. The corporate tax rate is $40 \%$. What is its NPV?

$$
\begin{aligned}
\text { Accounting Earnings } & =\$ 3,00 \mathrm{~K}-\$ 100 \mathrm{~K}-\$ 100 \mathrm{~K} \\
= & \$ 100 \mathrm{~K} \\
\text { After-Tax Cashflow } & =(1-0.4) \times(\$ 3,00 \mathrm{~K}-\$ 100 \mathrm{~K})+ \\
& 0.4 \times \$ 100 \mathrm{~K} \\
= & \$ 160 \mathrm{~K}
\end{aligned}
$$

## Cash Flow Calculations

| Date | Accounting Earnings <br> Before Tax | Accounting Earnings <br> After Tax | Cash Flow After-tax |
| :---: | :---: | :---: | :---: |
|  | 0 | 0 | $-1,000,000$ |
| 1 | $300,000-100,000-100,000=$ | $(1-0.4)(100,000)=$ <br> 60,000 | $(1-0.4)(300,000-100,00)+$ <br> $40,000=160,000$ |
| 2 | 100,000 | 60,000 | 160,000 |
| 3 | 100,000 | 60,000 | 160,000 |
| 4 | 100,000 | 60,000 | 160,000 |
| 5 | 100,000 | 60,000 | 160,000 |
| 6 | 100,000 | 60,000 | 160,000 |
| 7 | 100,000 | 60,000 | 160,000 |
| 8 | 100,000 | 60,000 | 160,000 |
| 9 | 100,000 | 60,000 | 160,000 |
| 10 | 100,000 | 60,000 | 160,000 |

- The accounting earnings do not accurately reflect the actual timing of cash flows


## Discount Rates

## So Far, We Have Shown That:

- A project's discount rate (i.e., required rate of return) is the expected rate of return demanded by investors for the project
- The discount rate(s) in general depend on the timing and risk of the cashflow(s)
- The discount rate is usually different for different projects
- Therefore, it is in general incorrect to use a company-wide "cost of capital" to discount cash flows of all projects


## What Is The Required Rate of Return on a Project?

- Simple case: single discount rate can be used for all cashflows of a project (the term structure of discount rates is flat)
- General case (the term structure of discount rates is not flat)


## Discount Rates

## Use CAPM to Estimate Cost of Capital

- Project's required rate of return is determined by the project beta:

$$
\bar{R}_{\text {project }}=R_{f}+\beta_{\text {project }}\left(\bar{R}_{m}-R_{f}\right)
$$

- What matters is the project beta, not the company beta!
- What if project beta is unknown?
- Find comparable "pure-play" company and use its beta
- Find comparable historical project and use its cashflows to estimate beta
- Use intuition and empirical judgment to guesstimate beta


## Discount Rates

## Example:

Bloomberg, a provider of financial data and analytics, is considering entering the publishing business (Bloomberg Press), and must evaluate the NPV of the estimated cashflows from this business. What cost of capital should it use for these NPV calculations?

- Bloomberg should not use its own beta to discount Bloomberg Press cashflows
- Bloomberg should use the beta of a publishing company (e.g., John Wiley \& Sons)
- What about using McGraw-Hill's beta?


## Discount Rates



Image by MIT OpenCourseWare.

## Discount Rates

## Example (cont):

- Beta of JW/A (from http://finance.yahoo.com): 1.29
- Riskfree rate: $5 \%$
- Market risk premium: 6\%

$$
\begin{aligned}
\bar{R}_{\text {project }} & =R_{f}+\beta_{\text {project }}\left(\bar{R}_{m}-R_{f}\right) \\
& =0.05+1.29 \times 0.06=12.7 \%
\end{aligned}
$$

- Use judgment in interpreting and adjusting this estimate
- Estimates are always wrong!
- How good is the approximation?


## Discount Rates Over Time

## Discount Rates Over Different Horizons Are, In General, Different

- The term structure of discount rates arises from two sources:

1. Term structure of interest rates: The discount rates in absence of risk can be different for sure cashflows at different dates
2. Term structure of risk premia:
a) The risk of cashflows at different dates is different
b) The price of risk is different for different dates

- Use the discount rate that corresponds to the risk at the time the cashflow is generated


## Discount Rates Over Time

## Example:

A firm is investing in an oil exploration project:

- Drilling takes place over the coming year
- At the end of the first year:
- with probability $1 / 3$, it finds 3 million barrels of oil
- with probability $2 / 3$, it finds nothing
- Conditional on successful exploration, 3 million barrels of oil will be produced by the end of the second year (There is no more oil after that)
- Expected after-tax profit per barrel is $\$ 20$
- The riskfree rate is $5 \%$
- Industry discount rate of oil production is $20 \%$
- The exploration risk is non-systematic (beta of 0.0)
- What is the NPV of the project?


## Discount Rates Over Time

## Example (cont):

- Potential value of the cash flows after drilling (at $t=1$ ):

$$
C F_{1}= \begin{cases}0 & \text { with prob } 2 / 3 \\ \frac{20 \times 3}{1.20}=\$ 50 \mathrm{MM} & \text { with prob } 1 / 3\end{cases}
$$

- The value of the project at date 0 :

$$
\begin{aligned}
\mathrm{PV} & =\frac{\mathrm{E}\left[C F_{1}\right]}{1+R_{1}}=\frac{E\left[C F_{1}\right]}{1.05} \\
& =\frac{0 \times(2 / 3)+\$ 50 \times(1 / 3)}{1.05}=\$ 15.9 \mathrm{MM}
\end{aligned}
$$

## Project Interactions

## Deciding Among A Set of Projects

- If projects are independent, apply NPV rule to each project
- If projects are dependent (e.g., mutually exclusive-accepting one rules out the others), we have to compare their NPVs

Optimal Timing of Projects

- Reject project
- Accept project now
- Accept project later
- Sometimes waiting can increase NPV!


## Project Interactions

## Example:

Potential demand for your product is projected to increase over time. If you start the project early, your competitors will catch up with you faster, by copying your idea. Your opportunity cost of capital is $10 \%$. Denoting by FPV the project's NPV at the time of introduction, we have:

| Year to Start | FPV | \% Change in FPV | NPV |
| :---: | :---: | :---: | :---: |
| 1 | 100 | - | 91 |
| 2 | 120 | 20 | 99 |
| 3 | 138 | 15 | 104 |
| 4 | 149 | 8 | 102 |

Before year 4, the return to waiting is larger that the opportunity cost of capital, $10 \%$. As long as the growth rate of FPV remains below $10 \%$ after year 4, it is best to wait and introduce at the end of year 3.

## Alternatives to NPV

In Practice, Other Investment Rules Are Also Used

1. Payback Period
2. Internal Rate of Return (IRR)
3. Profitability Index (PI)

- Firms use these rules because they were used historically and they may have worked (in combination with common sense) in the particular cases encountered by these firms.
- These rules sometimes give the same answer as NPV, but in general they do not. We should be aware of their shortcomings and use NPV whenever possible.
- The bottom line is: The NPV rule dominates these alternatives


## Payback Period

Payback Period is the minimum $k$ such that

$$
C F_{1}+C F_{2}+\cdots+C F_{k} \geq-C F_{0}=I_{0}
$$

- In words, $k$ is the minimum length of time such that the sum of cash flows from a project is positive


## Decision Criterion Using Payback Period

- For independent projects: Accept if $k$ is less than or equal to some fixed threshold $t^{*}$
- For mutually exclusive projects: Among all the projects having $k \leq t^{*}$, accept the one that has the minimum payback period


## Payback Period

## Shortcomings

- Ignores time-value of money
- Ignores cashflows after $k$


## Discounted Payback:

$$
\frac{C F_{1}}{1+R_{1}}+\cdots+\frac{C F_{k}}{\left(1+R_{k}\right)^{k}} \geq-C F_{0}=I_{0}
$$

- Still ignores cashflows after $k$
$\Rightarrow$ Use NPV!


## Profitability Index

Profitability Index (PI) is the ratio of the present value of future cash flows and the initial cost of a project:

$$
\mathrm{PI} \equiv \frac{\mathrm{PV}}{-C F_{0}}=\frac{\mathrm{PV}}{I_{0}}
$$

## Decision Criterion Using PI

- For independent projects: Accept all projects with PI greater than one (this is identical to the NPV rule)
- For mutually exclusive projects: Among the projects with PI greater than one, accept the one with the highest PI.


## Profitability Index

## PI Gives The Same Answer As NPV When

1. There is only one cash outflow, which is at time 0
2. Only one project is under consideration

## Shortcomings:

- Pl scales projects by their initial investments. The scaling can lead to wrong answers in comparing mutually exclusive projects

|  | $C F_{0}$ | $C F_{1}$ | IRR | NPV at 10\% | PI at 10\% |
| :--- | :---: | :---: | :---: | ---: | :---: |
| Project 1 | $-1,000$ | 2,000 | $100 \%$ | 818.18 | 1.82 |
| Project 2 | $-2,000$ | 3,600 | $80 \%$ | $1,272.73$ | 1.64 |
| Project 2-1 | $-1,000$ | 1,600 | $60 \%$ | 454.55 | 1.45 |

$\Rightarrow$ Use NPV!

## IRR Defined By Solution To:

$$
I_{0}=\frac{C F_{1}}{(1+\mathrm{IRR})}+\frac{C F_{2}}{(1+\mathrm{IRR})^{2}}+\cdots+\frac{C F_{t}}{(1+\mathrm{IRR})^{t}}
$$

## Decision Criterion Using IRR

- For independent projects: Accept a project if its IRR is greater than some fixed IRR*, the threshold rate
- For mutually exclusive projects: Among the projects having IRR's greater than IRR*, accept one with the highest IRR


## IRR Rule Leads To The Same Decisions As NPV If

1. There is only one cash outflow, which occurs at time 0
2. Only one project is under consideration
3. The opportunity cost of capital is the same for all periods
4. The threshold rate is set equal to opportunity cost of capital

## Shortcomings:

- Non-existent or multiple IRRs in certain cases
- Incorrect rankings for loans and other projects with negative cashflows in future periods
- Ignore scale
$\Rightarrow$ Use NPV!


## Internal Rate of Return (IRR)

## Example:

Incorrect ranking for loan-type cashflow sequences

|  | $C F_{0}$ | $C F_{1}$ |
| ---: | ---: | ---: |
| Project 1 | -100 | 120 |
| Project 2 | 100 | -120 |

- The IRR of both projects is $20 \%$
- If actual opportunity cost is $10 \%$, IRR says to accept both projects
- However,
- Project 1 has a positive NPV only if $R<20 \%$
- Project 2 has a positive NPV only if $R>20 \%$
- Should take project 1 and reject project 2


## Internal Rate of Return (IRR)

## Example:

Non-existence of IRR

|  | $C F_{0}$ | $C F_{1}$ | $C F_{2}$ |
| ---: | ---: | ---: | ---: |
| Project 1 | -105 | 250 | -150 |
| Project 2 | 105 | -250 | 150 |

- No IRR exists for these two projects


## Internal Rate of Return (IRR)

## Example:

Multiple IRR's

|  | $C F_{0}$ | $C F_{1}$ | $C F_{2}$ | $C F_{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| Project 1 | $-500,000$ | $1,575,000$ | $-1,653,750$ | 578,815 |
| Project 2 | $-500,000$ | $1,605,000$ | $-1,716,900$ | 612,040 |

$\mathrm{IRR}_{1}=7 \%$
$\mathrm{IRR}_{2}=\left\{\begin{array}{l}4 \% \\ 7 \% \\ 10 \%\end{array}\right.$


Image by MIT OpenCourseWare.

## Internal Rate of Return (IRR)

## Example:

Incorrect project ranking using IRR for mutually exclusive projects:
a) Projects of different scales:

|  | $C F_{0}$ | $C F_{1}$ | IRR | NPV at $10 \%$ |
| :---: | :---: | :---: | :---: | :---: |
| Project 1 | $-10,000$ | 20,000 | $100 \%$ | $8,181.82$ |
| Project 2 | $-20,000$ | 36,000 | $80 \%$ | $12,727.27$ |

- One workaround to this problem is to use incremental cashflows:
- See if lower investment (project 1 ) is a good idea
- See if incremental investment (project 2) is a good idea

|  | $C F_{0}$ | $C F_{1}$ | IRR | NPV at $10 \%$ |
| :--- | :---: | :---: | :---: | :---: |
| Project 1 | $-10,000$ | 20,000 | $100 \%$ | $8,181.82$ |
| Project 2 | $-20,000$ | 36,000 | $80 \%$ | $12,727.27$ |
| Project 2-1 | $-10,000$ | 16,000 | $60 \%$ | $4,545.45$ |

## Internal Rate of Return (IRR)

## Example (cont):

b) Projects with different time patterns of cash flows:

| $C F_{t}$ | 0 | 1 | 2 | 3 | 4 | 5 | etc. | IRR | NPV at $10 \%$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Project 1 | -90 | 60 | 50 | 40 | 0 | 0 | $\cdots$ | $33 \%$ | 35.92 |
| Project 2 | -90 | 18 | 18 | 18 | 18 | 18 | $\cdots$ | $20 \%$ | 90.00 |
| Project 2-1 | 0 | -42 | -32 | -22 | 18 | 18 | $\cdots$ | $15.6 \%$ | 54.08 |

$\Rightarrow$ Use NPV!

## The Practice of Capital Budgeting

## Comparison of Methods Used by Large U.S. and Multinational Firms

|  | Large U.S. Firms | Multi-Nationals |  |
| :--- | :---: | :---: | :---: |
|  | Percentage Using <br> Each Method | Use as <br> Primary Method | Use as <br> Secondary Method |
| Payback Period | $80.3 \%$ | $5.0 \%$ | $37.6 \%$ |
| IRR | 65.5 | 65.3 | 14.6 |
| NPV | 67.6 | 16.5 | 30.0 |
| Other | - | 2.5 | 3.2 |

## The Practice of Capital Budgeting

## Historical Comparison of Primary Use of Various Techniques

|  | 1959 | 1964 | 1970 | 1975 | 1977 | 1979 | 1981 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Payback Period | $34 \%$ | $24 \%$ | $12 \%$ | $15 \%$ | $9 \%$ | $10 \%$ | $5.0 \%$ |
| IRR | 19 | 38 | 57 | 37 | 54 | 60 | 65.3 |
| NPV | - | - | - | 26 | 10 | 14 | 16.5 |
| IRR or NPV | 19 | 38 | 57 | 63 | 64 | 74 | 81.8 |

Source: S. Ross, R. Westerfield, and B. Jordon, Essentials of Corporate Finance, Irwin,1996.

## Other Issues in Capital Budgeting

- Competitive response
- CF forecasts should take into account responses of competitors.
- Capital rationing
- Sources of positive-NPV projects
- Short-run competitive advantage (right place at right time)
- Long-run competitive advantage (patent, technology, economies of scale, etc.)
- Noise


## Key Points

- Use the NPV rule for capital budgeting decisions: take all projects with positive NPV, or take highest-NPV project if mutually exclusive
- Consider project interactions separately
- Use after-tax cashflows for NPV calculations, not accounting earnings
- Use the CAPM to estimate cost of capital with project beta
- Be careful about risks that change over time or across different stages
- Be wary of alternative to NPV:
- Payback rule, discounted payback rule
- Profitability index
- Internal rate of return


## Additional References

- Bernstein, 1992, Capital Ideas. New York: Free Press.
- Bodie, Z., Kane, A. and A. Marcus, 2005, Investments, 6th edition. New York: McGraw-Hill.
- Brennan, T., Lo, A. and T. Nguyen, 2007, Portfolio Theory: A Review, to appear in Foundations of Finance.
- Campbell, J., Lo, A. and C. MacKinlay, 1997, The Econometrics of Financial Markets. Princeton, NJ: Princeton University Press.
- Grinold, R. and R. Kahn, 2000, Active Portfolio Management. New York: McGraw-Hill.
- Ross, S., Westerfield, R. and B. Jordon, 1996, Essentials of Corporate Finance. New York: Irwin.

MIT OpenCourseWare
|http://ocw.mit.edu

### 15.401 Finance Theory I

Fall 2008

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

