# 15.433 INVESTMENTS Class 17: The Credit Market Part 1: Modeling Default Risk

Spring 2003

## The Corporate Bond Market



Figure 1: Mortgage and FED rates, Source : www.federalreserve.gov/releses/hr



Figure 2: Corporate rating spreads, Source : www.federalreserve.gov/releses/hr



Figure 3: Corporate rating spreads, Source : Moody's



Figure 4: Corporate rating migration for industry-sector, Source : Standard Poor's.



Figure 5: Chart cash flow Conditioning on survival.

Assuming no default risk,

$$P_0 = \sum_{i=1}^{8} e^{r \cdot t_i} + 100 \cdot e^{r \cdot 4} \tag{1}$$

How does the default risk affect the bond price?

# Modelling Default Risk

Modelling default risk is central to the pricing and hedging of credit sensitive instruments.

Two approaches to modelling default risk:

- Structural approach, "first-passage": default happens when the total asset value of the firm falls below a threshold value (for example, the firm's book liability) for the first time.
- Reduced-form, "intensity-based": the random default time  $\tilde{\tau}$  is governed by an intensity process  $\lambda$ .

For pricing purpose, the reduced-form approach is adequate, and will be the focus of this class.

## Modelling Random Default Times

The probability of survival up to time t:

$$Prob(\tilde{\tau} \ge t) \tag{2}$$

The probability of default? before time t:

$$Prob\left(\tilde{\tau} < 0\right) = 1 - Prob\left(\tilde{\tau} \ge t\right) \tag{3}$$

We assume that  $\widetilde{T}$  is exponentially distributed with constant default intensity  $\lambda$ :



Figure 6: Survival Probability.

# **Default Probability and Credit Quality**

One-Year default probability =  $1-e^{\lambda}$ 

Default intensity  $\lambda = ?$ 



Figure 7: Survival Probability.

|      | AAA    | AA+    | AA     | AA-    | A+     | А      | A-     | BBB+   | BBB    |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| AAA  | 91.95% | 4.11%  | 2.86%  | 0.48%  | 0.16%  | 0.20%  | 0.12%  | 0.04%  | 0.04%  |
| AA+  | 2.31%  | 84.71% | 8.75%  | 2.88%  | 0.19%  | 0.48%  | 0.10%  | 0.00%  | 0.38%  |
| AA   | 0.62%  | 1.36%  | 85.42% | 7.24%  | 2.60%  | 1.49%  | 0.25%  | 0.50%  | 0.22%  |
| AA-  | 0.00%  | 0.15%  | 3.44%  | 83.67% | 8.61%  | 3.02%  | 0.50%  | 0.23%  | 0.15%  |
| A+   | 0.00%  | 0.03%  | 0.83%  | 4.47%  | 82.27% | 8.08%  | 2.75%  | 0.46%  | 0.40%  |
| А    | 0.08%  | 0.06%  | 0.49%  | 0.66%  | 5.25%  | 82.50% | 5.44%  | 3.18%  | 1.11%  |
| A-   | 0.14%  | 0.04%  | 0.11%  | 0.35%  | 1.13%  | 8.58%  | 77.39% | 7.21%  | 3.00%  |
| BBB+ | 0.00%  | 0.00%  | 0.08%  | 0.13%  | 0.59%  | 2.26%  | 8.32%  | 75.24% | 8.36%  |
| BBB  | 0.07%  | 0.03%  | 0.07%  | 0.17%  | 0.45%  | 0.93%  | 2.24%  | 7.83%  | 77.76% |
| BBB- | 0.05%  | 0.00%  | 0.11%  | 0.21%  | 0.11%  | 0.69%  | 0.59%  | 2.67%  | 9.46%  |
| BB+  | 0.17%  | 0.00%  | 0.00%  | 0.08%  | 0.08%  | 0.51%  | 0.34%  | 0.67%  | 4.21%  |
| BB   | 0.00%  | 0.00%  | 0.12%  | 0.06%  | 0.06%  | 0.37%  | 0.18%  | 0.31%  | 1.59%  |
| BB-  | 0.00%  | 0.00%  | 0.00%  | 0.05%  | 0.09%  | 0.05%  | 0.28%  | 0.33%  | 0.52%  |
| B+   | 0.00%  | 0.03%  | 0.00%  | 0.10%  | 0.00%  | 0.03%  | 0.23%  | 0.10%  | 0.13%  |
| В    | 0.00%  | 0.00%  | 0.07%  | 0.00%  | 0.00%  | 0.14%  | 0.21%  | 0.00%  | 0.14%  |
| B-   | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.18%  | 0.00%  | 0.00%  | 0.36%  | 0.00%  |
| CCC  | 0.19%  | 0.00%  | 0.00%  | 0.00%  | 0.19%  | 0.00%  | 0.19%  | 0.19%  | 0.56%  |
| D    | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  |

 $\label{eq:Figure 8: Survival Probability, Migration table, Source: RiskMetrics^{TM}.$ 



Figure 9: One-Year Default Rates by Modified Ratings, 1983-1995, Source: Moodys (1996).

#### Pricing A Defaultable Bond

For simplicity, let's first assume that the riskfree interest rate r is a constant. Consider a  $\tau$ -year zero-coupon bond issued by a firm with default intensity  $\lambda$ :

$$P_0 = \$100 \cdot e^{-r \cdot \tau} \cdot Prob(\tilde{\tau} \ge \tau) \tag{4}$$

$$P_0 = \$100 \cdot e^{-r \cdot \tau} \cdot e^{-\lambda \cdot \tau} \tag{5}$$

$$P_0 = \$100 \cdot e^{-(r+\lambda)\cdot\tau} \tag{6}$$

where we assume that conditioning on a default, the recovery value of the bond is 0 (we have also assumed risk-neutral pricing).

The yield on the defaultable bond is  $r + \lambda$ , resulting in a credit spread of  $\lambda$ .



Figure 10: Chart Annual GDP Growth Rate, source: Bureau of Economic Analysis Stochastic

### **Default Intensity**

In general, the credit quality of a firm changes over time.

A more realistic model is to treat the arrival intensity as a random process.

Suppose that intensities are updated with new information at the beginning of each year, and are constant during the year. Then the probability of survival for t years is

$$E\left(e^{-\lambda_0+\lambda_1+\dots+\lambda_{t-1}}\right)\tag{7}$$

For example,

$$\lambda_{t+1} - \lambda_t = k \left( \bar{\lambda} - \lambda_t \right) + \varepsilon_{t+1} \tag{8}$$

Can you calculate the probability of survival for  $\tau$  years? What is the price of a  $\tau$ -year zero-coupon bond? What if the riskfree interest rate is also stochastic?

**Example:** A portfolio consists of two long assets \$100 each. The probability of default over the next year is 10% for the first asset, 20% for the second asset, and the joint probability of default is 3%. What is the expected loss on this portfolio due to credit risk over the next year assuming 40% recovery rate for both assets.

**Probabilities:** 

$$0.1 \cdot (1 - 0.2) \qquad - \quad default \ probability \ of \ A \tag{9}$$

$$0.2 \cdot (1 - 0.1)$$
 – default probability of B (10)

$$0.03 \quad - \quad joint \ default \ probability$$
 (11)

Expected losses:

$$0.1 \cdot (1 - 0.2) \cdot 100 \cdot (1 - 0.4) = 4.8 \tag{12}$$

$$0.2 \cdot (1 - 0.1) \cdot 100 \cdot (1 - 0.4) = 10.8 \tag{13}$$

$$0.03 \cdot 200 \cdot (1 - 0.4) = 3.6 \tag{14}$$

$$4.8 + 10.8 + 3.6 = \$19.2 mio.$$
(15)

**Example:** Assume a 1-year US Treasury yield is 5.5% and a Eurodollar deposit rate is 6%. What is the probability of the Eurodollar deposit to default assuming zero recovery rate)?

$$\frac{1}{1.06} = \frac{1-\pi}{1.055} \tag{16}$$

$$\pi = 0.5\% \tag{17}$$

**Example:** Assume a 1-year US Treasury yield is 5.5% and a and a default probability of a one year CP is 1%. What should be the yield on the CP assuming 50% recovery rate?

$$\frac{1}{1+x} = \frac{1-\pi}{1.055} + \frac{0.5\pi}{1.055}$$
(18)

$$= 6\%$$
 (19)

# Some Practitioner's Credit Risk Model

RiskMetrics:  $CreditMetrics^{TM}$ 

http://riskmetrics.com/research

Credit Suisse Financial Products: CreditRisk+

http://www.csfb.com/creditrisk

KMV Corporation /  $CreditMonitor^{TM}$ 

http://www.kmv.com

#### Focus:

BKM Chapter 14

- p. 415-422 (definitions of instruments, innovation in the bond market)
- p. 434-441 (determinants of bond safety, bond indentures)

Style of potential questions: Concept check questions, p. 448 ff. question 31

# Questions for Next Class

Please read:

- Reyfman,
- Toft (2001), and
- Altman, Caouette, Narayanan (1998).