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Introduction


So far, we took the expected return of risky asset as given. But where does expected 

return come from? 

Using the intuition that investors are risk averse, one explanation is that the risk 

premium - expected return in excess of the riskfree rate - is a reward for bearing risk. 

Does this make sense? 

The Capital Asset Pricing Model (CAPM) provides a simple, yet elegant framework 

for us to think about the question of reward and risk. 



”The CAPM ”


In market equilibrium, investors are only rewarded for bearing systematic risk - the 

type of risk that cannot be diversified away. 

They should not be rewarded for bearing idiosyncratic risk, since this uncertainty 

can be mitigated through appropriate diversification. 

Sharpe on CAPM 

Bill Sharpe, one of the originators of the CAPM, in an interview with the Dow Jones 
Asset Manager: 

”But the fundamental idea remains that there’s no reason to expect re-
ward just for bearing risk. Otherwise, you’d make a lot of money in Las 
Vegas. If there’s reward for risk, it’s got to be special. There’s got to be 
some economics behind it or else the world is a very crazy place. I don’t 
think differently about those basic ideas at all”. 

- Sharpe (1998) 



Assumptions 

1. Perfect Markets 

• Perfect competition - each investor assumes he has no effect on security prices 

• No taxes 

• No transactions costs 

• All assets publicly traded, perfectly divisible 

• No short-sale constraints 

• Same riskfree rate for borrowing and lending 

2. Identical Investors 

• Myopic1 

• Same holding period 

• Normality or Mean-Variance Utility 

• Homogeneous expectations 

1 myopic: adj. Of, pertaining to, or affected with myopia; short-sighted, near-sighted 



The Equilibrium Market Portfolio


Recall that every investor holds some combination of the riskless asset and the tan

gency portfolio. 
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Figure 1: Equilibrium market portfolio and efficient frontier. 

When we aggregate the portfolios of all individual investors, lending and borrowing 

will cancel out, and the value of the aggregated risky portfolio will equate the en-

tire wealth of the economy. The tangent portfolio has become the equilibrium market 

portfolio. 
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The Market Price of Risk 

There are N mean-variance investors in the economy, each with $1. 
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Aggregating over all Investors, the total wealth invested in the market portfolio is:
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In equilibrium, the total wealth invested in the market portfolio must be: 

$1 · N (2) 

This implies: 

µM − rf = σ2 
M Ā (3) 

where is an overall measure of the risk aversion among the market participants:
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Pricing the Individual Risky Assets


The market portfolio is made of individual risky assets: 

rM = w1r1 + w2r2 + . . . + wN rN (5) 

where wi is the fraction of total market wealth invested in asset i. 

How are the individual risky assets priced in equilibrium? 

To answer this question, we deviate the equilibrium holding wi of asset i slightly away 

from its optimal level, and see how such a deviation affect our investor’s maximized 

utility. 

Let’s focus on a representative investor with the average risk aversion . 

1

2


U (r) = E (r) −
 Ā var (r) (6) 

His portfolio holding: 

∗ r = y ∗ (w
1 r1 + w ∗ 

2 r2 + . . . + w ∗ 
N rN ) + (1 − y ∗) rf (7) 

∗What is his y ? 

∗In equilibrium, wi is the optimal solution for this investor. This means: 

∂U (r) 
= 0 (8)


∂wi 

Keeping everything else fixed, what if we change wi a little? 

∂E (r) 
= E (ri) − rf (9)

∂wi 

∂var (r) 
= 2 · cov (rM , ri) (10)

∂wi 



So it must be that:


¯E (ri) − rf = A cov (rM , ri) (11) 

Recall that: 

¯E (rM ) − rf = A var (rM ) (12) 

This takes us to: 

E (ri) − rf = βi (E (rM ) − rf ) (13) 

where 

cov (rM , ri)
βi = (14) 

var (rM ) 

Our derivation uses the quadratic utility function. In general, the proof goes through 

for any utility function with a preference for mean, and aversion to variance. 



Risk and Reward in the CAPM


For a risky asset ri, the right measure of the rewardable risk is not its variance var (ri), 

but its covariance cov (ri, rM ) with the market. 

The exposure to the market risk can be best quantified by: 

cov (rM , ri)
βi = (15) 

var (rM ) 

For one unit exposure to the market risk, the reward is the same as the market: 

E(rM ) − rf (16) 

For β unit of exposure to the market, the reward is: 

βi · (E (rM ) − rf ) (17) 

For zero exposure to the market risk, the reward is zero, no matter how risky the asset 

is. In summary, the risk and reward relation in the CAPM is a linear relation. 

Systematic vs. Idiosyncratic 
Each investment carries two distinct risks: 

•	 Systematic risk is market-wide and pervasively influences virtually all security 

prices. 

Examples are interest rates and the business cycle. 

•	 Idiosyncratic risk involves unexpected events peculiar to a single security or a 

limited number of securities. 

Examples are the loss of a key contract or a change in government policy toward 

a specific industry. 



The Security Market Line 
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Figure 2: Equilibrium market portfolio and efficient frontier. 



Systematic vs. Idiosyncratic 
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A Linear Factor Model


A simple model to capture these two types of risks is the linear factor model: 

ri = E (ri) + βi · F + εi (18) 

which carries two risky components: 

• systematic F : common to all securities. 

• idiosyncratic εi: specific only to security i. 

Both the common factor F and the idiosyncratic component are zero mean random 

variables. 



The Arbitrage Pricing Theory 

A SINGLE-FACTOR VERSION 

Assume a frictionless market with no taxes or transaction costs. Assets are perfectly 

divisible. There is no short-sale constraint. 

Assume a one-factor linear model: 

• βi asset i’s sensitivity to the common factor. 

• F common factor, with E(F ) = 0. 

• εi firm-specific return, with zero mean, and independent of the common factor or 

other firms’ idiosyncratic component. 

Possible common factor: unexpected changes in inflation, industrial production, etc. 

The Arbitrage Pricing Theory: 

E (ri − rf ) E (rj − rf ) 
= (19)

βi βj 

The expected return of any asset is determined by its exposure to the common factor, 

and has nothing to do with its idiosyncratic component. 

In deriving APT, one need not make any assumption about investors’ preferences, 

or assume any specific distribution for the asset returns. 

The APT is not an equilibrium concept. It does not rely on the existence of a market 

portfolio. It is based purely on no-arbitrage conditions. 



Summary


In equilibrium, the tangency portfolio becomes the market portfolio. The expected 

return of the market portfolio depends on the average risk aversion in the market. 

The intuition of the CAPM: expected return of any risky asset depends linearly on 

its exposure to the market risk, measured by β. 

Diversification is an important concept in finance. It builds on a power mathemat

ical machine called Strong Law of Large Number. 

Like the CAPM, the basic concept of the APT is that differences in expected return 

must be driven by differences in non-diversifiable risk. 

The APT is based purely on no-arbitrage condition. It is not an equilibrium con

cept, and does not depend on having a market portfolio. 

Focus: 

BKM Chapters 9-11 

•	 p. 263 bottom to 284, (CAPM, assumptions, beta, liquidity, covariance, expecta

tions, SML, zero-beta model, alpha) 

• p. 287, eq. 10.5, eq.10.6 & eq.10.7 

• p. 300 to 308 

• p. 308 to 313 middle (eq. 10.15, eq. 10.16) 

•	 p. 324 to 334 middle (diversification, eq. 11.2, APT and CAPM, Multifactor 

APT, eq. 11.5, eq. 11.6) 

Reader: Roll and Ross (1995). 

type of potential questions: chapter 9 concept check question 1, 2, 3 & 4, p. 286 

ff. questions 1, 4, 17, 22, 23, 25 chapter 10 concept check question 1, 2, 3 & 4, p. 314 

ff. questions 4, 5, 6, 7, 18, 19 chapter 11 concept check question 2, 3, 4 & 5, p. 335 ff. 

questions 3, 5, 7, 10, 16 



Questions for Next Class 

Please read: 

• BKM Chapter 13, 

• Jagannathan and McGrattan (1995), 

• Kritzman (1993), and 

• Kritzman (1994) 

Think about the following questions: 

• What are the predictions of the CAPM? 

• Are they testable? 

• What is a regression? 

• What is t-test? 



TECHNICAL NOTES: The Mathematical

Foundation of Diversification


Behind the concept of diversification, there is deep, elegant, and powerful mathemati

cal machinery. 

STRONG LAW OF LARGE NUMBERS: Let x1, x2, . . . , be a sequence of identically 

distributed and independent random variables with mean µ. We have: 

lim 
N →∞ 

1 
xi = µ (20)

N 

almost surely.




A Simulation Based ”Proof”


STEP 1: We start with X1, assume that it is standard normal, and simulate it 10,000 

times. Using the 10,000 scenarios, we plot its ”empirical” probability distribution, 

which is basically the histogram of the 10,000 scenarios normalized so that the total 

probability is one. For notational purpose, we write y1 = xi. 
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Fig

ure 3: Likelihood and simulation outcome for y1 at n=1. 

STEP 2: We repeat STEP 1 ten times, each time with a new seed in our random 

number generator, so that xi, x2, ..., x10 are indeed independent. We add them up, 

scenario by scenario, and re scale the sum by 10. That is, we have 10,000 scenarios of 

=y10 
1 
10 

(x1 + x2 + · · · + x10) (21) 

We then plot the ”empirical” probability distribution of y10. Chart: 
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Outcome of Simulation 

Figure 4: Likelihood and simulation outcome for y1 at n=10. 

STEP 3: Finally, we repeat STEP 1 one hundred times, obtaining 10,000 scenarios 

of: 

=y100 
1 

100 
(x1 + x2 + · · · + x100) (22) 
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Outcome of Simulation 

Figure 5: Likelihood and simulation outcome for y1 at n=100. 

According to Law of Large Number, as N grows infinitely large, 

yN = 
1 
N 

N 

i−1 

xi (23) 

approaches zero with probability one.


For xi normally distributed, it is actually easy to see that yN =
 1 
N 

�N 
i−1 xi will ap

proach zero with probability one. Since:


var (yN ) = 
1 

N 2 

N 

i−1 

var (xi) = 
1 

(24)
N 
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Outcome of Simulation 

Figure 6: Likelihood and simulation outcome for y1 at n= 1 / 10 / 100. 
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