Black-Scholes Formula

Brandon Lee

15.450 Recitation 2

Expectation of a Lognormal Variable

- Suppose $X \sim N\left(\mu, \sigma^{2}\right)$. We want to know how to compute $E\left[e^{X}\right]$. This calculation is often needed (e.g., page 30 of Lecture Notes 1) because we usually assume that log return is distributed normally.

$$
\begin{aligned}
E\left[e^{x}\right] & =\int_{-\infty}^{\infty} e^{x} \phi(x) d x \\
& =\int_{-\infty}^{\infty} \exp (x) \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}+x\right) d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x^{2}+\left(-2 \mu-2 \sigma^{2}\right) x+\mu^{2}\right)\right) d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x^{2}+-2\left(\mu+\sigma^{2}\right) x+\left(\mu+\sigma^{2}\right)^{2}\right)\right) \exp \\
& =\exp \left(\mu+\frac{1}{2} \sigma^{2}\right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x-\left(\mu+\sigma^{2}\right)\right)^{2}\right) d x \\
& =\exp \left(\mu+\frac{1}{2} \sigma^{2}\right)
\end{aligned}
$$

Change of Measure

- Given a probability measure (think probability distribution), a random variable that is positive and integrates to one defines a change of measure. In other words, suppose we have a probability measure P and a random variable ξ such that $E^{P}[\xi]=1$. Then we can define a new probability measure Q through ξ by

$$
Q(A)=\int_{A} \xi d P
$$

- We can think of ξ as a redistribution of probability weights from P to Q . Hence it's called "change of measure" and denoted $\frac{d Q}{d P}$.

Normality-Preserving Change of Measure

- Now, there is a special class of random variables called exponential martingales that, as change of measures, preserve normality. In more concrete terms, suppose probability measure P is given by the normal distribution $N\left(\mu^{P}, \sigma^{2}\right)$. Then, if $\frac{d Q}{d P}$ is an exponential martingale, then the new probability measure Q is also normally distributed, with a different mean but with the same variance, $N\left(\mu^{Q}, \sigma^{2}\right)$.
- Such exponential martingales take on the form

$$
\xi=\exp \left(-\eta \varepsilon^{P}-\frac{1}{2} \eta^{2}\right)
$$

for arbitrary numbers η (later in Lecture Notes 2, we'll see that η can be stochastic processes as well).

- Furthermore, we know the exact relationship between μ^{P} and $\mu^{Q}: \mu^{P}-\mu^{Q}=\eta \sigma$ (the previous notes had a typo and had σ^{2} instead of σ).
- Suppose under Q (the risk-neutral measure), the stock return is given by

$$
\frac{S_{t+1}}{S_{t}}=\exp \left(r-\frac{1}{2} \sigma^{2}+\sigma \varepsilon^{Q}\right)
$$

where $\varepsilon^{Q} \sim N(0,1)$ under the Q-measure.

- Let's derive the Black-Scholes formula in this simple setting. Suppose $S_{0}=1$ and we have a call option that matures at $T=1$ with a strike price K. The price of this call option is

$$
\begin{aligned}
C & =e^{-r} E^{Q}\left[\max \left(S_{1}-K, 0\right)\right] \\
& =e^{-r} \int_{S_{1}=K}^{\infty}\left(S_{1}-K\right) d Q \\
& =e^{-r} \int_{S_{1}=K}^{\infty} S_{1} d Q-e^{-r} \int_{S_{1}=K}^{\infty} K d Q
\end{aligned}
$$

Continued

- Call the first term C_{1} and the second term C_{2}.
- Let's calculate them separately.

$$
\begin{aligned}
C_{1} & =e^{-r} \int_{S_{1}=K}^{\infty} S_{1} d Q \\
& =e^{-r} \int_{\frac{\ln K-r+\frac{\sigma^{2}}{2}}{\sigma}}^{\infty} \exp \left(r-\frac{\sigma^{2}}{2}+\sigma \varepsilon^{Q}\right) \cdot \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\varepsilon^{Q}\right)^{2}\right) d \varepsilon \\
& =\int_{\frac{\ln K-r+\frac{\sigma^{2}}{2}}{\sigma}}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\left(\varepsilon^{Q}\right)^{2}-2 \sigma \varepsilon^{Q}+\sigma^{2}\right)\right) d \varepsilon \\
& =\int_{\frac{\ln K-r+\frac{\sigma^{2}}{2}}{\sigma}}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\varepsilon^{Q}-\sigma\right)^{2}\right) d \varepsilon \\
& =\Phi\left(\sigma-\frac{\ln K-r+\frac{\sigma^{2}}{2}}{\sigma}\right) \\
& =\Phi\left(\frac{-\ln K+r+\frac{\sigma^{2}}{2}}{\sigma}\right)
\end{aligned}
$$

- Now for C_{2}

$$
\begin{aligned}
C_{2} & =e^{-r} \int_{S_{1}=K}^{\infty} K d Q \\
& =e^{-r} \int_{\frac{\ln K-r+\frac{\sigma^{2}}{2}}{\sigma}}^{\infty} K \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\varepsilon^{Q}\right)^{2}\right) d \varepsilon \\
& =e^{-r} K \int_{\frac{\ln K-r+\frac{\sigma^{2}}{2}}{\infty}}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\varepsilon^{Q}\right)^{2}\right) d \varepsilon \\
& =e^{-r} K \Phi\left(\frac{-\ln K+r-\frac{\sigma^{2}}{2}}{\sigma}\right)
\end{aligned}
$$

- So the option price is given by the Black-Scholes formula

$$
\begin{aligned}
C & =C_{1}-C_{2} \\
& =\Phi\left(\frac{-\ln K+r+\frac{\sigma^{2}}{2}}{\sigma}\right)-e^{-r} K \Phi\left(\frac{-\ln K+r-\frac{\sigma^{2}}{2}}{\sigma}\right)
\end{aligned}
$$

Numerical Integration

- Definite integrals can rarely be computed analytically. In those cases, we need to resort to numerical methods. Here, we present the simplest method using the Riemann sum approximation.
- As an example, let's say we want to compute

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x
$$

- We have to worry about two things: summation on the right tail and fineness of approximating rectangles.
- Refer to the MATLAB \circledR^{\circledR} code.

MIT OpenCourseWare
http://ocw.mit.edu

15.450 Analytics of Finance

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

