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Ordinary Least Squares

The model:
y = Xβ + ε

where y and ε are column vectors of length n (the number of
observations), X is a matrix of dimensions n by k (k is the
number of parameters), and β is a column vector of length k.

For every observation i = 1,2, . . . ,n, we have the equation

yi = xi1β1 + · · ·+ xikβk + εi

Roughly speaking, we need the orthogonality condition

E [εixi ] = 0

for the OLS to be valid (in the sense of consistency).
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OLS Estimator

β̂We want to find that solves

min(y −Xβ )′ (y −Xβ )
β

The first order condition (in vector notation) is

ˆ0 = X ′
(
y −Xβ

and solving this leads to the well-known

)
OLS estimator

β̂ =
(
X ′X

)−1
X ′y
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Geometric Interpretation

The left-hand variable is a vector in the n-dimensional space.
Each column of X (regressor) is a vector in the n-dimensional
space as well, and we have k of them. Then the subspace
spanned by the regressors forms a k-dimensional subspace of
the n-dimensional space. The OLS procedure is nothing more
than finding the orthogonal projection of y on the subspace
spanned by the regressors, because then the vector of residuals
is orthogonal to the subspace and has the minimum length.

This interpretation is very important and intuitive. Moreover,
this is a unique characterization of the OLS estimate.

Let’s see how we can make use of this fact to recognize OLS
estimators in disguise as more general GMM estimators.

Brandon Lee OLS: Estimation and Standard Errors



Interest Rate Model

Refer to pages 35-37 of Lecture 7.

The model is
rt+1 = a0 +a1rt + εt+1

where

E [εt+1] = 0

E ε
2
t+1 = b0 +b1rt

One easy set of momen

[
t cond

]
itions:

0 = E
[
(1, rt)

′[ (rt+1−a0−a1rt)

20 = E (1, rt)
′
(

(rt+1−a0−a1rt

]
) −b0−b1rt

)]
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Continued

Solving these sample moment conditions for the unknown
parameters is exactly equivalent to a two-stage OLS
procedure.

Note that the first two moment conditions give us

ET

[
(1, rt)

′ (rt+1− â0− â1rt) = 0

But this says that the estimated residuals a

]
re orthogonal to

the regressors and hence â0 and â1 must be OLS estimates of
the equation

rt+1 = a0 +a1rt + εt+1
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Continued

Now define
ε̂t+1 = rt+1− â0− â1rt

then the sample moment conditions

ET

[
(1, rt)

′
(

(rt+1− â0− 2â1rt) − b̂0− b̂1rt
)]

= 0

tell us that b̂0 and b̂1 are OLS estimates from the equation

ε̂
2
t+1 = b0 +b1rt +ut+1

by the same logic.
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Standard Errors

Let’s suppose that E ε2
i |X = σ2 and E [εiεj |X ] = 0 for i = j .

In other words, we are assuming independent and
homoskedastic errors.

What is the standard error of the OLS estimator under this
assumption?

Var
(

β̂ |X
)

= Var
(

β̂ −β |X

= Var

)

= X ′X

(( )−1
X ′X X ′ε|X( )−1

X ′Var (ε
1

X

)
| )X

(
X ′X

)−
Under the above assumption,

Var (ε|X ) = σ
2In

and so
ˆ 1

Var β X = σ
2 X ′X

−

[ ]
6

(
|
) ( )
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Continued

We can estimate σ2 by

σ̂
1

2 =
n ∑

n

ε̂
2
i

i=1

and the standard error for the OLS estimator is given by

̂ 1
ar
(

β̂V |X
)

= σ̂2
(
X ′X

)−
This is the standard error that most (less sophisticated)
statistical softwares report.

But it is rarely the case that it is safe to assume independent
homoskedastic errors. The Newey-West procedure is a
straightforward and robust method of calculating standard
errors in more general situations.
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Newey-West Standard Errors

Again,

Var
(

β̂ |X
)

ˆ= Var

1
=

(
β −β |X

Var X ′X
−

)

1
=

(( )
X ′ε|X

)
(
X ′X

)−
Var

( ′
ε| 1

X X
)(

X ′X
−

The Newey-West procedure boils down to an altern

)
ative way

of looking at Var(X ′ε|X ).
If we suspect that the error terms may be heteroskedastic, but
still independent, then

V̂ar
(
X ′ε|X

) n

= ∑ ε̂
2
i ·xixi′

i=1

and our standard error for the OLS estimate is
n

ˆVar β |X = X ′X
−1

∑ ε
2 1
î ·xixi′ X ′X

−̂( ) ( ) (
i=1

)( )
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Continued

If we suspect correlation between error terms as well as
heteroskedasticity, then

V̂ar
( k k j
X ′ε

)
= ∑

−| ||X
j=−k

i
k

(
∑
n

ε ε
′

îˆ +j ·xixi+j
t=1

)

and our standard error for the OLS estimator is

V̂ar
(

β̂ |X
) k

1 k j
=
(
X ′X

)− (
∑

−| |

j=−k
∑
n

k

(
ε̂i ε̂i+j

t=1

· ′
xixi+j

))(
X ′X

)−1
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Continued

We can also write these standard errors to resemble the
general GMM standard errors (see page 23 of Lecture 8).
In the uncorrelated errors case, we have

V̂ar
(

β̂ |X
)

=
( n

X ′
1

X
)−1(

∑ ε̂
2
i

i=1

·xixi′
)(

X ′X
)−

1
=

X

n

( ′X −

n

) 1
(

1
∑
n

ε̂
2

n i
i=1

·xixi′
)(

X ′X −

n

) 1

1
=

1
Ê

n

(
xixi
′)− (1

∑
n

ε̂
2
i ·

1
x Êix
′ ′ −

n i xixi
i=1

)
and for the general Newey-West standard errors,

(
we h

)
ave

V̂ar
(

∑
k

β̂ X
)
=
(
X ′X

)−1( k−|j ||
j=−k

n

ε
′

î ε̂i+j xix X ′X
−1

k

(
∑ i+j
t=1

·

))( )
1

=
1

Ê xixi
′ − 1

∑
k k−|j |

∑
n

ε̂iε
′

î+j xix ˆ
i+j E xixi

′ −1
n

( ) (
n j=−k k

(
t=1

·

)) ( )
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