Practice Problems

- 1. Consider a 3-period model with t = 0, 1, 2, 3. There are a stock and a risk-free asset. The initial stock price is \$4 and the stock price doubles with probability 2/3 and drops to one-half with probability 1/3 each period. The risk-free rate is 1/4.
 - (a) Compute the risk-neutral probability at each node.

(b) Compute the Radon-Nikodym derivative $(d\mathbf{Q}/d\mathbf{P})$ of the risk-neutral measure with respect to the physical measure at each node.

(c) Compute the state-price density at each node.

(d) Price a lookback option with payoff at t = 3 equal to $(\max_{0 \le t \le 3} S_t) - S_3$ using risk-neutral probability.

(e) Price the lookback option using state-price density and compare your answer to (d).

2. Show that, under the risk-neutral measure, the discounted gain process

$$\hat{G}_t = \frac{P_t}{B_t} + \sum_{s=1}^t \frac{D_s}{B_s}$$

is a martingale (i.e. $E_t^Q \left[\hat{G}_{t+1} \right] = \hat{G}_t$) from the definition of risk-neutral measure in lecture notes

$$P_t = E_t^Q \left[\sum_{u=t+1}^T \frac{B_t}{B_u} D_u \right]$$

That is the reason why the risk-neutral measure is also called the "equivalent martingale measure" (EMM).

3. Consider the following model of interest rates. Under the physical probability measure \mathbf{P} , the short-term interest rate is $\exp(r_t)$, where r_t follows

$$dr_t = -\theta(r_t - \overline{r}) dt + \sigma_r dZ_t,$$

where Z_t is a Brownian motion.

Assume that the SPD is given by

$$\pi_t = \exp\left(-\int_0^t r_u + \frac{1}{2}\eta_u^2 \, du - \int_0^t \eta_u \, dZ_u\right)$$

where η_t is stochastic, and follows

$$d\eta_t = -\kappa(\eta_t - \overline{\eta}) \, dt + \sigma_\eta \, dZ_t^\eta$$

where Z_t^{η} is a Brownian motion independent of Z_t .

- (a) Derive the dynamics of the interest rate under the risk-neutral probability **Q**.
- (b) Compute the spot interest rates for all maturities. (Hint: look for bond prices in the form $P(t,T) = \exp(a(T-t) + b(T-t)r_t + c(T-t)\eta_t))$.
- (c) Compute the instantaneous expected rate of return on a zero-coupon bond with time to maturity τ .
- (d) Show that the slope of the term structure of interest rates predicts the excess returns on long-term bonds. Discuss the intuition. Show that more volatility in the price of risk, η , means more predictability in bond returns.
- 4. Suppose that uncertainty in the model is described by two independent Brownian motions, $Z_{1,t}$ and $Z_{2,t}$. Assume that there exists one risky asset, paying no dividends, following the process

$$\frac{dS_t}{S_t} = \mu(X_t) \, dt + \sigma \, dZ_{1,t}$$

where

$$dX_t = -\theta X_t \, dt + dZ_{2,t}$$

The risk-free interest rate is constant at r.

- (a) What is the price of risk of the Brownian motion $Z_{1,t}$?
- (b) Give an example of a valid SPD in this model.
- (c) Suppose that the price of risk of the second Brownian motion, $Z_{2,t}$, is zero. Characterize the SPD in this model.
- (d) Derive the price of a European Call option on the risky asset in this model, with maturity T and strike price K.
- 5. Consider a European call option on a stock. The stock pays no dividends and the stock price follows an Ito process. Is it possible that, while the stock price declines between t_1 and $t_2 > t_1$, the price of the Call increases? Justify your answer.
- 6. Suppose that the stock price S_t follows a Geometric Brownian motion with parameters μ and σ . Compute

$$\mathbf{E}_0\left[(S_T)^{\lambda}\right].$$

7. Suppose that, under **P**, the price of a stock paying no dividends follows

$$\frac{dS_t}{S_t} = \mu(S_t) \, dt + \sigma(S_t) \, dZ_t$$

Assume that the SPD in this market satisfies

$$\frac{d\pi_t}{\pi_t} = -r \, dt - \eta_t dZ_t$$

- (a) How does η_t relate to r, μ_t , and σ_t ?
- (b) Suppose that there exists a derivative asset with price $C(t, S_t)$. Derive the instantaneous expected return on this derivative as a function of t and S_t .
- (c) Derive the PDE on the price of the derivative C(t, S), assuming that its payoff is given by $H(S_T)$ at time T.
- (d) Suppose that there is another derivative trading, with a price $D(t, S_t)$ which does not satisfy the PDE you have derived above. Construct a trading strategy generating arbitrage profits using this derivative, the risk-free asset and the stock.
- 8. Consider a futures contract with price changing according to

$$F_{t+1} = F_t + \lambda + \mu_t + \sigma_F \varepsilon_t,$$

$$\mu_{t+1} = \rho \mu_t + \sigma_\mu u_t$$

where ε_t and u_t are independent IID $\mathcal{N}(0,1)$ random variables. Assume that the interest rate is constant at r. Your objective is to construct an optimal strategy of trading futures between t = 0 and T to maximize the terminal objective

$$\mathbf{E}\left[-e^{-\alpha W_T}\right]$$

where W_T is the terminal value of the portfolio. Assume the initial portfolio value of W_0 .

- (a) Formulate the problem as a dynamic program. Describe the state vector, verify that it follows a controlled Markov process.
- (b) Derive the value function at T and T-1 and optimal trading strategy at T-1 and T-2.
- 9. Suppose you can trade two assets, a risk-free bond with interest rate r and a risky stock, paying no dividends, with price S_t . Assume $S_{t+1} = S_t \times \exp(\mu + \sigma \varepsilon_t)$ where ε_t are IID $\mathcal{N}(0, 1)$ random variables.

Assume that whenever you buy the stock you must pay transaction costs, but you can sell stock without costs. Specifically, when you buy X dollars worth of stock, you must

pay $(1 + \tau)X$, so the fee is proportional, given by τ . Your objective is to figure out how to trade optimally to maximize the objective

$$\mathbb{E}\left[-e^{-\alpha W_T}\right]$$

where W_T is the terminal value of the portfolio.

- (a) What should be the state vector for this problem? Formulate the problem as a dynamic program, verify the assumptions on the state vector and the payoff function.
- (b) Write down the Bellman equation.
- 10. Suppose we observe returns on N independent trading strategies, r_t^n , n = 1, 2, t = 1, ..., T. Assume that returns are IID over time, and each strategy has normal distribution:

$$r_t^n \sim \mathcal{N}(\mu_n, \sigma^2)$$

Assume $\mu_1 > \mu_2$.

- (a) Estimate the mean return on each strategy by maximum likelihood. Express $\hat{\mu}_n$ as a function of observed returns on strategy n.
- (b) Since returns are normally distributed, $\hat{\mu}_n$ is also normally distributed. Describe its distribution. (In general, for arbitrary return distribution, $\hat{\mu}_n$ is only approximately normal).
- (c) What is the distribution of $\max_n(\widehat{\mu}_n)$? characterize it using the CDF function.
- (d) Suppose you are interested in identifying the strategy with the higher mean return. You pick the strategy with the higher estimated mean. What is the probability that you have made a mistake?
- 11. Suppose interest rate follows an AR(1) process

$$r_t - \overline{r} = \theta(r_{t-1} - \overline{r}) + \varepsilon_t$$

where ε_t are IID $\mathcal{N}(0, \sigma^2)$ random variables. You want to estimate the average rate, \overline{r} , based on the sample r_t , t = 0, 1, ..., T. Assume that we know the true value of θ .

- (a) Derive the estimate of \overline{r} by maximum likelihood.
- (b) Show that this estimate is valid even if the shocks ε_t are not normally distributed, as long as the mean of ε_t is zero.
- (c) Treating ε_t as IID, derive the asymptotic variance of your estimator of \overline{r} . Do not use Newey-West, derive the result from first principles. How does the answer depend on θ ?

12. Suppose you observe two time series, X_t and Y_t . You have a model for Y_t :

$$Y_{t+1} = \rho Y_t + (a_0 + a_1 X_t) \varepsilon_{t+1}, \ t = 0, 1, ..., T$$

where $\varepsilon_{t+1} \sim \mathcal{N}(0, 1)$, IID. Assume that the shocks ε_t are independent of the process X_t and the lagged values of Y_t . There is no model for X_t .

- (a) Using the GMM framework, which moment condition can be used to estimate ρ ?
- (b) Argue why it is valid to estimate ρ using an OLS regression of Y_{t+1} on Y_t .
- (c) Suppose that the variance of the estimator $\hat{\rho}$ is $(1/T)\sigma_{\rho}^2$. Describe how you would test the hypothesis that $\rho = 0$.
- (d) Write down the conditional log-likelihood function $\mathcal{L}(\rho, a_0, a_1)$.
- (e) Suppose that the parameters a_0 and a_1 are known. Derive the maximum-likelihood estimate for ρ .
- 13. Suppose we observe a sequence of IID random variables $X_t \ge 0, t = 1, ..., T$, with probability density

$$pdf(X) = \lambda e^{-\lambda X}, \quad X \ge 0$$

- (a) Write down the log-likelihood function $\mathcal{L}(\lambda)$.
- (b) Compute the maximum likelihood estimate λ .
- (c) Derive the standard error for λ .
- 14. Suppose you observe a series of observations X_t , t = 1, ..., T. You need to fit a model

$$X_{t+1} = f(X_t, X_{t-1}; \theta) + \varepsilon_{t+1}$$

where $E[\varepsilon_{t+1}|X_t, X_{t-1}, ..., X_1] = 0$. Innovations ε_{t+1} have zero mean conditionally on $X_t, X_{t-1}, ..., X_1$. You also know that innovations ε_{t+1} have constant conditional variance:

$$E[\varepsilon_{t+1}^2 | X_t, X_{t-1}, ..., X_1] = \sigma^2$$

The parameter σ is not known. θ is the scalar parameter affecting the shape of the function $f(X_t, X_{t-1}; \theta)$.

- (a) Describe how to estimate the parameter θ using the quasi maximum likelihood approach. Derive the relevant equations.
- (b) Describe in detail how to use parametric bootstrap to estimate a 95% confidence interval for θ .
- (c) Describe how to estimate the bias in your estimate of θ using parametric bootstrap.

- (d) Derive the asymptotic standard error for $\widehat{\theta}$ (large T) using GMM standard error formulas.
- 15. Consider an estimator $\hat{\theta}$ for a scalar-valued parameter θ . Suppose you know, as a function of the true parameter value θ_0 , the distribution function of the estimator, i.e., you know

 $CDF_{\widehat{\theta}-\theta_0}(x)$

(In practice, you may be able to estimate the above CDF using bootstrap). Note that this CDF does not depend on model parameters.

Based on the definition of the confidence interval, derive a formula for a confidence interval which covers the true parameter value with probability 95%.

MIT OpenCourseWare http://ocw.mit.edu

15.450 Analytics of Finance Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.