Note on Cash Flow Statements

Indirect Cash Flow Statements can be pretty confusing, but they don't have to be if you think about their relationship to the other financial statements. Here I present several examples to help you to intuitively think about how you can use the income statement and the balance sheet to determine the statement of cash flows using the indirect method. After looking at these examples, you can construct even more complicated ones for yourself to strengthen your intuition.

There is a mathematical method for thinking about the indirect method. Here I will repeat the derivation that you saw in class. You should also have this information in

- the note entitled "Understanding the Statement of Cash Flow" in the course packet, and
- the class slides "The Statement of Cash Flow."

Balance Sheet Equation:

$$
\begin{array}{ll}
\mathbf{A}(\mathbf{t})=\mathbf{L}(\mathbf{t})+\mathbf{S E}(\mathbf{t}) & \text { Beginning Balance Sheet Equation (at time } \mathrm{t}) \\
\mathbf{A (t + \mathbf { 1 }) = \mathbf { L } (\mathbf { t } + \mathbf { 1 }) + \mathbf { S E } (\mathbf { t } + \mathbf { 1 })} & \text { Ending Balance Sheet Equation (at time } \mathrm{t}+1 \text { period) }
\end{array}
$$

Differences:
$\Delta \mathbf{A}=\Delta \mathrm{L}+\Delta \mathbf{S E}$
Decompose:
$\Delta \mathrm{Cash}+\Delta \mathrm{OCA}+\Delta \mathrm{NCA}=\Delta \mathrm{CL}+\Delta \mathrm{NCL}+\Delta \mathrm{CC}+\Delta \mathrm{OE}+\Delta \mathrm{RE}$

Note that $\triangle \mathrm{RE}=\mathrm{NI}-$ Div so we have:

$$
\Delta \mathrm{Cash}+\Delta \mathrm{OCA}+\Delta \mathrm{NCA}=\Delta \mathrm{CL}+\Delta \mathrm{NCL}+\Delta \mathrm{CC}+\Delta \mathrm{OE}+\mathrm{NI}-\text { Div }
$$

Since we are interested in the change in cash, we re-arrange to solve for the change in cash:

$$
\begin{aligned}
\Delta \mathrm{Cash} & =-\Delta \mathrm{OCA}-\Delta \mathrm{NCA}+\Delta \mathrm{CL}+\Delta \mathrm{NCL}+\Delta \mathrm{CC}+\Delta \mathrm{OE}+\mathrm{NI}-\text { Div } \\
& =+\mathrm{NI}-\Delta \mathrm{OCA}+\Delta \mathrm{CL}-\Delta \mathrm{NCA}+\Delta \mathrm{NCL}+\Delta \mathrm{CC}+\Delta \mathrm{OE}-\text { Div }
\end{aligned}
$$

Putting in the accounts we know about:

```
\(\Delta\) Cash \(=+\) NI \(-\Delta\) netA \(/\) R \(-\Delta\) Inv. \(-\Delta \mathrm{OCA}+\Delta \mathrm{CL}-\Delta\) netPPE \(-\Delta \mathrm{NCA}+\Delta \mathrm{NCL}+\Delta \mathrm{CC}+\Delta \mathrm{OE}-\mathrm{Div}\)
```

But the change in net PP\&E can be broken down even further into B / S and I/S effects:
Δ netPPE $=\Delta$ PPE $-\triangle$ AccDepreciation
$=$ Gain(Loss) - DepExp + (\triangle PPE $-\Delta$ AccDepreciation) -Gain(Loss) + DepExp

- Since Gains(Losses) should not affect the Operating Section, but are included in the IncomeStatement, they need to be subtracted(added) from Net Income in this section.
- Since Depreciation Expense is a non-cash expense (but affects Net Income), it needs to be added back to the Net Income in the Operating Section.

Inserting the expanded \triangle netPPE:

```
\DeltaCash = + NI - \DeltanetA/R - \DeltaInv. - \OCA + \DeltaCL - (Gain(Loss) - DepExp + (\DeltaPPE -
    AccDepreciation) -Gain(Loss) + DepExp) - \DeltaNCA + \DeltaNCL + \DeltaCC + \DeltaOE - Div
```

Rearranging:
$\begin{array}{rlr}\Delta \mathrm{Cash}= & + \text { NI }+ \text { DepExp }-\Delta \text { netA/R - } \Delta \text { Inv. }-\Delta \mathrm{OCA}+\Delta \mathrm{CL}-\text { Gain(Loss) } & \text { OPERATING } \\ & -(\Delta \mathrm{PPE}-\Delta \text { AccDepreciation) }+ \text { Gain(Loss) }- \text { DepExp }-\Delta \mathrm{NCA}+\Delta \mathrm{OE} & \text { INVESTING } \\ & +\Delta \mathrm{NCL}+\Delta \mathrm{CC}-\text { Div } & \text { FINANCIING }\end{array}$
Further:
$\Delta \mathrm{PPE}=$ Acquisition - Disposal at Original Cost
Δ AccDepreciation $=$ DepExp - AccDepreciation of Disposed Item
Thus:
$\Delta P P E-\Delta$ AccDepreciation -Gain(Loss) + DepExp $=$ Acquisition - (Disposal at Original
Cost - AccDepreciation of Disposed Item) - Gain(Loss)
$=$ Acquisition - Proceeds from Disposal

Example 1-Revenues and the indirect statement of cash flows
A Simple Example - Services sold with no COGS

Transaction	Assets		Liabilities	+	Shareholders' Equity	Notes
	Cash	A/R			Retained Earnings	
Make a sale for cash	\$30,000				\$30,000	Sales Revenue
Make a sale on credit		\$42,000			42,000	Sales Revenue
Customer pays part of A / R	37,000	$(37,000)$				
	\$67,000	\$5,000			\$72,000	
	$\begin{gathered} \text { Cash Collected Equals } \\ \text { of } \$ 67,000 \end{gathered}$	Increase in A / R of \$5,000	Minus the		Net Income of $\$ 72,000$	

Statement of Cash Flows			
Cash from Operating			
Net Income	\$ 72,000		
Adjustments			
(Less increases' in Current Assets)			
Increase in A / R	$(5,000)$		
Cash Increase from Operating	67,000		
Cash from Investing			
Cash from Financing \$ 0			
Change in cash Beginning cash balance			67,000
			0
			67,000

[^0]
Example 2 - Revenues with COGS and the indirect statement of cash flows

An Example - Goods sold with COGS (Goods sold at 10 times the value of COGS)
Note that each sale is split up into 2 transactions on the BSE: a Revenue component and COGS component

| Transaction | | Assets | | $=$ Liabilities | Shareholders'
 Equity | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Statement of Cash Flows

Cash from Operating		
Net Income	$\$ 64,800$	
Adjustments (Less increases ${ }^{2}$ in Current Assets)	$(5,000)$	
Increase in A/R	$(2,800)$	
Increase in Inventory		$\$ 57,000$
Cash Change in Operating		$\$ 0$
Cash from Investing		$\$ 0$
Cash from Financing		$\$ 57,000$
	$\$ 0$	
Change in cash	$\$ 57,000$	
Beginning cash balance		
Ending cash balance		

[^1]
Example 3-Expenses

An Example - Salary Expenses

Transaction	Assets	$=$	Liabilities	+	Shareholders' Equity	Notes
	Cash		Salaries Payable		Retained Earnings	
Pay Salaries	$(\$ 13,000)$				$(\$ 13,000)$	Salary Expense
Accrue Salaries			\$1,000		$(1,000)$	Salary Expense
	$(\$ 13,000)$		\$1,000		(\$14,000)	
	Cash Spent of \$13,000	$\stackrel{\text { Equals }}{\leftarrow}$	Increase in Salary Pay. of $\$ 1,000$	Plus the	Net Income of $(\$ 14,000)$	

Statement of Cash Flows

Cash from Operating

Net Income (\$14,000)

Adjustments
(Less increases ${ }^{3}$ in Current Assets)
none
(Plus increases ${ }^{4}$ in Current Liabilities)
Change in Salaries Payable \qquad
Cash Increase from Operating (\$13,000)
Cash from Investing
\$ 0
Cash from Financing
Change in cash
Beginning cash balance
$(\$ 13,000)$

Ending cash balance
$(\$ 13,000)$

[^2]
Example 4 - PP\&E

An Example - Acquiring and Selling PP\&E

Alternate method for determining Cash from Investing:			
Less Change Net PP\&E			
Change in PP\&E	$(\$ 30,000)$		
Change in Accum Deprec	10,000		
		$(\$ 20,000)$	
Plus Gains	4,000		
Less Deprec. Exp.	$(35,000)$		
TOTAL Cash from Investing		$(\$ 51,000)$	

[^0]: ${ }^{1}$ Decreases in Current Assets would be Added

[^1]: ${ }^{2}$ Decreases would be added

[^2]: ${ }^{3}$ Decreases in Current Assets would be added
 ${ }^{4}$ Decreases in Current Liabilities would be subtracted

