Social Network Analysis

Basic Concepts, Methods & Theory

University of Cologne Johannes Putzke

Agenda

- Introduction
- Basic Concepts
- Mathematical Notation
- Network Statistics

Textbooks

- Hanneman & Riddle (2005) Introduction to Social Network Methods, available at http://faculty.ucr.edu/~hanneman/nettext/
- Wasserman & Faust (1994): Social Network Analysis Methods and Applications, Cambridge: Cambridge University Press.

Introduction

Basic Concepts

What is a network?

What is a Network?

- Actors / nodes / vertices / points
- Ties / edges / arcs / lines / links

What is a Network?

- Actors / nodes / vertices / points
 - Computers / Telephones
 - Persons / Employees
 - Companies / Business Units
 - Articles / Books
 - Can have properties (attributes)
- Ties / edges / arcs / lines / links

What is a Network?

- Actors / nodes / vertices / points
- Ties / edges / arcs / lines / links
 - connect pair of actors
 - types of social relations
 - friendship
 - acquaintance
 - kinship
 - advice
 - hindrance
 - sex
 - allow different kind of flows
 - messages
 - money
 - diseases

What is a Social Network? - Relations among People

Folie: 9

What is a Network? - Relations among Institutions

- as institutions
 - owned by, have partnership / joint venture
 - purchases from, sells to
 - competes with, supports
- through stakeholders
 - board interlocks
 - Previously worked for

Image by MIT OpenCourseWare.

Why study social networks?

Example 2) Homophily Theory

	Male	Female	
Male	123	68	
Female	95	164	

- Birds of a feather flock together
- See McPherson, Smith-Lovin & Cook (2001)

	0-13	14-29	30-44	45-65	>65
0-13	212	63	117	72	91
14-29	83	372	75	67	84
30-44	105	98	321	214	117
45-65	62	72	232	412	148
>65	90	77	124	153	366

• age / gender \rightarrow network

Managerial Relevance – Social Network...

...vs. Organigram

Image by MIT OpenCourseWare.

SNA – A Recent Trend in Social Sciences Research

 Keyword search for "social" + "network" in 14 literature databases

SNA – A Recent Trend in IS Research

How to analyze Social Networks?

Example: Centrality Measures

- Who is the most prominent?
 - Who knows the most actors?
 (Degree Centrality)
 - Who has the shortest distance to the other actors?
 - Who controls knowledge flows?

Example: Centrality Measures

- Who is the most prominent?
 - Who knows the most actors?
 - Who has the shortest distance to the other actors? (Closesness Centrality)
 - Who controls knowledge flows?

Example: Centrality Measures

- Who is the most prominent?
 - Who knows the most actors
 - Who has the shortest distance to the other actors?
 - Who controls knowledge flows?
 (Betweenness Centrality)

Basic Concepts

Dyads, Triads and Relations

Strength of a Tie

5

- Social network
 - finite set of actors and relation(s) defined on them
 - depicted in graph/ sociogram
 - Iabeled graph
- Strength of a Tie
 - dichotomous vs.
 - valued
 - depicted in valued graph or signed graph (+/-)

2

Strength of a Tie

- Strength of a Tie
 - nondirectional vs. directional
 - depicted in *directed graphs* (*digraphs*)
 - nodes connected by arcs
 - 3 isomorphism classes
 - null dyad
 - mutual / reciprocal / symmetrical dyad
 - asymmetric / antisymmetric dyad
 - converse of a digraph
 - reverse direction of all arcs

Walks, Trails, Paths

- (Directed) Walk (W)
 - sequence of nodes and lines starting and ending with (different) nodes (called *origin* and *terminus*)
 - Nodes and lines can be included more than once
- Inverse of a (directed) walk (W⁻¹)
 - Walk in opposite order
- Length of a walk

- How many lines occur in the walk? (same line counts double, in weighted graphs add line weights)
- (Directed) Trail
 - Is a walk in which all lines are distinct
- (Directed) Path
 - Walk in which all nodes and all lines are distinct
- Every path is a trail and every trail is a walk

Walks, Trails and Paths - Repetition

- W = n1 l1 n2 l2 n3 l4 n5 l6 n6
 - ∎ n1
 - ∎ n3
- W = n1 l1 n2 l2 n3 l4 n5 l4 n3
- W = n1 |1 n2 |2 n3 |4 n5 |5 n4 |3 n3

- Path
 - origin
 - terminus
- Walk
- Trail

Reachability, Distances and Diameter

- Reachability
 - If there is a path between nodes n_i and n_i
- Geodesic
 - Shortest path between two nodes
- (Geodesic) Distance d(i,j)
 - Length of Geodesic (also called "degrees of separation")

Mathematical Notation and Fundamentals

Three different notational schemes

- 1. Graph theoretic
- 2. Sociometric
- 3. Algebraic

1. Graph Theoretic Notation

- N Actors $\{n_1, n_2, ..., n_g\}$ • $n_1 \rightarrow n_i$ there is a tie between the ordered pair <n_i, n_i> • $n_1 \rightarrow n_i$ there is no tie (n_i, n_i) nondirectional relation <n_i, n_i> directional relation ■ g(g-1) number of ordered pairs in <n_i, n_i> directional network g(g-1)/2 number of ordered pairs in nondirectional network collection of ordered pairs with ties $\{I_1, I_2\}$ $|_{2},...,|_{g}$
- G graph descriped by sets (N, L)
- Simple graph has no reflexive ties, loops

2. Sociometric Notation - From Graphs to (Adjacency/Socio)-Matrices

Valued, directed

2. Sociometric Notation

X g × g sociomatrix on a single relation
 g × g × R super-sociomatrix on R relations

X_R sociomatrix on relation R

X_{ij(r)} value of tie from n_i to n_i (on relation χ_r) where i ≠ j

2. Sociometric Notation – From Matrices to Adjacency Lists and Arc Lists Arc List

Adjacency List		
II		
1.111		
IVV		

III V IV III IV V **IV VI** VIII **VIV** V VI VIIV VIIV

Network Statistics

Different Levels of Analysis

- Actor-Level
- Dyad-Level
- Triad-Level
- Subset-level (cliques / subgraphs)
- Group (i.e. global) level

Measures at the Actor-Level: Measures of Prominence: Centrality and Prestige

Degree Centrality

- Who knows the most actors? (Degree Centrality)
- Who has the shortest distance to the other actors?
- Who controls knowledge flows?

Degree Centrality I

Degree Centrality II

- Interpretation: opportunity to (be) influence(d)
- Classification of Nodes
 - Isolates
 - $d_{I}(n_{i}) = d_{O}(n_{i}) = 0$
 - Transmitters
 - $d_i(n_i) = 0$ and $d_o(n_i) > 0$
 - Receivers
 - $d_i(n_i) > 0$ and $d_o(n_i) = 0$
 - Carriers / Ordinaries
 - $d_i(n_i) > 0$ and $d_o(n_i) > 0$
- Standardization of C_D to allow comparison across networks of different sizes: divide by ist maximum value

 $C_{D}'(n_{i}) = \frac{d(n_{i})}{g-1}$

Closeness Centrality

- Who knows the most actors?
- Who has the shortest distance to the other actors? (Closesness Centrality)
- Who controls knowledge flows?

Closeness Centrality

 Index of expected arrival time

$$C_{C}(n_{i}) = \frac{1}{\sum_{j=1}^{g} d\left(n_{i}, n_{j}\right)}$$

Reciprocal of marginals of geodesic distance matrix

- Standardize by multiplying (g-1)
- Problem: Only defined for connected graphs

Proximity Prestige

$$P_{P}(n_{i}) = \frac{I_{i} / (g-1)}{\sum_{j=1}^{g} d(n_{j}, n_{i}) / I_{i}}$$

- I_{i/}(g-1)
 - number of actors in the influence domain of n_i
 - normed by maximum possible number of actors in influence domain
- Σd(n_j,n_i)/ I_i
 - average distance these actors are to n_i

Eccentricity / Association Number

- Largest geodesic distance between a node and any other node
- max_j d(i,j)

Betweenness Centrality

- Who knows the most actors?
- Who has the shortest distance to the other actors?
- Who controls knowledge flows?
 (Betweenness Centrality)

Betweenness Centrality

- How many geodesic linkings between two actors j and k contain actor i?
 - g_{jk}(n_i)/g_{jk} probability that distinct actor n_i "involved" in communication between two actors n_i and n_k

$$C_B(n_i) = \frac{\sum_{j < k} g_{jk}(n_i)}{g_{jk}}$$

standardized by dividing through (g-1)(g-2)/2

Several other Centrality Measures

- ...beyond the scope of this lecture
 - Status or Rank Prestige, Eigenvector Centrality
 - also reflects status or prestige of people whom actor is linked to
 - Appropriate to identify *hubs* (actors adjacent to many peripheral nodes) and *bridges* (actors adjacent to few central actors)
 - attention: more common, different meaning of bridge!!!
 - Information Centrality
 - see Wasserman & Faust (1994), p. 192 ff.
 - Random Walk Centrality
 - see Newman (2005)

Condor – Betweenness Centrality

(Actor) Contribution Index

messa g essen t-messa g esreceived messa g essen t+messa g esreceived links to external networks Sender (+1) "Connector" "Gatekeeper" Communicator Ambassador Collaborator Expediter Contribution index Creator Guru Knowledge Expert provides the overall

coordinates and

organizes tasks

Contribution

frequency

Receiver (-1) serves as the ultimate source of explicit knowledge "Maven"

Measures at the Group-(Global-)Level and Subgroup-Level

Diameter of a Graph and Average Geodesic Distance

- Diameter
 - Largest geodesic distance between any pair of nodes
- Average Geodesic Distance
 - How fast can information get transmitted?

Density

Proportion of ties in a graph

High density (44%)

Low density (14%)

Density

In valued directed graph: Average strength of the arcs

Group Centralization I

- How equal are the individual actors' centrality values?
 - C_A(n^{*}_i) actor centrality index
 - $C_A(n^*)$ max_i $C_A(n_i^*)$
 - $\sum_{i=1}^{s} \left[C_A(n^*) C_A(n_i) \right]$ sum of difference between largest value and observed values
- General centralization index:

$$C_{A} = \frac{\sum_{i=1}^{g} \left[C_{A} \left(n^{*} \right) - C_{A} \left(n_{i} \right) \right]}{\max \sum_{i=1}^{g} \left[C_{A} \left(n^{*} \right) - C_{A} \left(n_{i} \right) \right]}$$

Group Centralization II

$$C_{D} = \frac{\sum_{i=1}^{g} \left[C_{D} \left(n^{*} \right) - C_{D} \left(n_{i} \right) \right]}{(g-1)(g-2)}$$

$$C_{C} = \frac{\sum_{i=1}^{g} \left[C_{C}(n^{*}) - C_{C}(n_{i}) \right]}{\left[(g-1)(g-2) \right](2g-3)}$$

$$CB = \frac{\sum_{i=1}^{g} \left[C_B(n^*) - C_B(n_i) \right]}{(g-1)^2 (g-2)} = \frac{\sum_{i=1}^{g} \left[C_B(n^*) - C_B(n_i) \right]}{(g-1)}$$

Folie: 54

Condor – Group Centralization

Subgroup Cohesion

- average strength of ties within the subgroup divided by average strength of ties that are from subgroup members to outsiders
- >1 \rightarrow ties in subgroup are stronger

Connectivity of Graphs and Cohesive Subgroups

Connectivity of Graphs

Connected Graphs, Components, Cutpoints and Bridges

Connectedness

 A graph is connected if there is a path between every pair of nodes

Components

- Connected subgraphs in a graph
- Connected graph has 1 component
- Two disconnected graphs are one social network!!!

Connected Graphs, Components, Cutpoints and Bridges

- Connectivity of pairs of nodes and graphs
 - Weakly connected
 - Joined by semipath
 - Unilaterally connected
 - Path from n_j to n_j or from n_j to n_j
 - Strongly connected
 - Path from n_j to n_j and from n_j to n_j
 - Path may contain different nodes
 - Recursively Connected
 - Nodes are strongly connected and both paths use the same nodes and arcs in reverse order

Connected Graphs, Components, Cutpoints and Bridges

- Cutpoints
 - number of components in the graph that contain node n_j is fewer than number of components in subgraphs that results from deleting n_j from the graph
- Cutsets (of size k)
 - k-node cut
- Bridges / line cuts
 - Number of components...that contain line *I_k*

Node- and Line Connectivity

How vulnerable is a graph to removal of nodes or lines?

Point connectivity /

Node connectivity

- Minimum number of k for which the graph has a knode cut
- For any value <k the graph is k-node-connected

Line connectivity / Edge connectivity

 Minimum number λ for which for which graph has a λ-line cut

Cohesive Subgroups

Cohesive Subgroups, (n-)Cliques, n-Clans, n-Clubs, k-Plexes, k-Cores

- Cohesive Subgroup
 - Subset of actors among there are relatively strong, direct, intense, frequent or positive ties
- Complete Graph
 - All nodes are adjacent
- Clique
 - Maximal complete subgraph of three or more nodes
 - Cliques can overlap
 - {1, 2, 3}
 - {1, 3, 4}
 - {2, 3, 5, 6}

Cohesive Subgroups, (n-)Cliques, n-Clans, n-Clubs, k-Plexes, k-Cores

- n-clique
 - maximal subgraph in which $d(i,j) \le n$ for all n_i , n_j
 - 2: cliques: {2, 3, 4, 5, 6} and {1, 2, 3, 4, 5}
 - intermediaries in geodesics do not have to be n-clique members themselves!
- n-clan
 - *n-clique* in which the d(i,j) ≤ n for the subgraph of all nodes in the n-clique
 - 2-clan: {2, 3, 4, 5, 6}
- n-club
 - maximal subgraph of diameter n
 - 2-clubs: {1, 2, 3, 4}; {1, 2, 3, 5} and {2, 3, 4, 5, 6}

Cohesive Subgroups, (n-)Cliques, n-Clans, n-Clubs, k-Plexes, k-Cores

- Problem: vulnerability of n-cliques
 Image: optimized state of the state of the
 - maximal subgraph in which each node is adjacent to not fewer than g_s-k nodes ("maximal": no other nodes in subgraph that also have d_s(i) ≥ (g_s-k)]
- k-cores
 - subgraph in which each node is adjacent to at least k other nodes in the subgraph

Analyzing Affiliation Networks

Two-mode network / affiliation network / membership network / hypernetwork

- nodes can be partitioned in two subsets
 - N (for example g persons)
 - M (for example h clubs)
- depicted in *Bipartite Graph*
- lines between nodes belonging to different subsets

Affiliation Matrix (Incidence Matrix)

- Connections among members of one of the modes based on linkages established through second mode
- g actors, h events
- A= {a_{ij}} (g×h)

		Football	Ballet	Tennis
	Peter	1		1
	Pat		1	
Actor	Jack	1		
	Ann		1	1
	Kim	1		1
	Mary		1	1
size of event		3	3	4

Event

Sociomatrix [(g+h) × (g+h)]

	Peter	Pat	Jack	Ann	Kim	Mary	Football	Ballet	Tennis
Peter	-	0	0	0	0	0	1	0	1
Pat	0	-	0	0	0	0	0	1	0
Jack	0	0	-	0	0	0	1	0	0
Ann	0	0	0	-	0	0	0	1	1
Kim	0	0	0	0	-	0	1	0	1
Mary	0	0	0	0	0	- /	0	1	1
Football	1	0	1	0	1	0	-	0	0
Ballet	0	1	0	1	0	1	0	-	0
Tennis	1	0	0	1	1	1	0	0	-

- Homogenous pairs and heterogenous pairs
- $X_r^N(g \times g), X_r^M(h \times h), X_r^{N,M}(g \times h), X_r^{N,M}(h \times g)$
 - One-mode sociomatrices X^N [and X^M]
 - rows, colums: actors [events];
 - x_{ij}: co-membership [number of actors in both events] (main diagonal meaningful, e.g. total events attended by an actor)

	Peter	Pat	Jack	Ann	Kim	Mary	Peter
Peter	2	0	1	1	2	1	Pat
Pat	0	1	0	1	0	1	Jack
Jack	1	0	1	0	1	0	
Ann	1	0	0	2	1	1	Ann
Kim	2	0	1	1	2	1	Kim
Mary	1	0	0	1	1	2	Mary

Event <u>Overlap / Interlocking</u> Matrix

	Football	Ballet	Tennis
Football	3	0	2
Ballet	0	3	1
Tennis	2	1	4

Cohesive Subsets of Actors or Events

- clique at level c (cf. also k-plexes, n-cliques etc.)
 - subgraph in which all pairs of events share at least c members
- connected at level q
 - subset in which all actors in the path are comembers of at least q+1 events

...HOLDOUT I...

When is Which Centrality Measure Appropriate?

Source: Borgatti, Stephen P. (2005) Centrality and Network Flow, Social Networks 27, p. 55-71

Assumptions of Centrality Measures

Which things flow through a network and how do they flow?

	Transfer	Serial	Parallel
Walks	Money exchange	Emotional support	Attitude influencing
Trails	Used Book	Gossip	E-mail broadcast
Paths	Mooch	Viral infection	Internet name- server
Geodesics	Package Delivery	Mitotic reproduction	<no process=""></no>

Source: Borgatti, Stephen P. (2005) Centrality and Network Flow, Social Networks 27, p. 55-71

Assumptions of Centrality Measures

- Example: Betweenness Centrality
 - Information travels along the shortest route

	Transfer	Serial	Parallel
Walks	Random Walk Betweenness	?	Closeness Degree Eigenvector
Trails	?	?	Closeness Degree
Paths	?	?	Closeness Degree
Geodesics	Closeness Betweenness	Closeness	?

Adequacy of Centrality Measures

	Transfer	Serial	Parallel
Walks	Money exchange	Emotional support	Attitude influencing
Trails	Used Book	Gossip	E-mail broadcast
Paths	Mooch	Viral infection	Internet name- server
Geodesics	Package Delivery	Mitotic reproduction	<no process=""></no>

Source: Borgatti, Stephen P. (2005) Centrality and Network Flow, Social Networks 27, p. 55-71

How to Calculate Geodesic Distance Matrices?

From Adjacency Matrices to (Geodesic) Distance Matrices I – (Reachability)

Repetition: Matrix Multiplication

XY = Z

$$\mathbf{z}_{ij} = \sum_{n=1}^{h} \mathbf{x}_{in} \mathbf{y}_{nj}$$

From Adjacency Matrices to (Geodesic) Distance Matrices II – (Reachability)

Power Matrix: Multiplying adjacency matrices

Х

 x_{ik}x_{kj} =1 only if lines (n_i,n_k) and (n_k,n_j) are present, i.e. X^[2,3,4] counts the number of walks (n_in_kn_j) of length 1 [2,3,4] between nodes n_i and n_i

	Т	П	Ш	IV	V	VI
L	1	0	1	0	0	0
П	0	2	0	1	1	0
III	1	0	3	1	1	2
IV	0	1	1	3	2	1
V	0	1	1	2	3	1
VI	0	0	2	1	1	2

From Adjacency Matrices to (Geodesic) Distance Matrices II – (Reachability)

• x_{ij}>0 ?

→ two nodes can be connected by paths of length \leq (g-1)

- Calculate $X^{[\Sigma]} = X + X^2 + X^3 + ... + X^{g-1}$
- $X^{[\Sigma]}$ shows total number of walks from $n_i to n_i$

X²

From Graphs to (Geodesic Distance)-Matrices (Reachability) – Geodesic Distance

- observer power matrices
- first power p for which the (i,j) element is non-zero gives the shortest path
- $d(i,j) = \min_{p} x_{ij}^{[p]} > 0$

			Χ			
	Т	Ш	III	IV	V	VI
Т	0	1	0	0	0	0
Ш	1	0	1	0	0	0
Ш	0	1	0	1	1	0
IV	0	0	1	0	1	1
V	0	0	1	1	0	1
VI	0	0	0	1	1	0

From Graphs to (Geodesic Distance)-Matrices (Reachability) – Geodesic Distance

			4	2	3	4
II	7	I	1	2	2	3
III	2	1	-	1	1	2
IV	3	2	1	I	1	1
V	3	2	1	1	I	1
VI	4	3	2	1	1	-

Folie: 84 MIT OpenCourseWare http://ocw.mit.edu

15.599 Workshop in IT: Collaborative Innovation Networks Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.