Social Network Analysis

Basic Concepts, Methods \& Theory

University of Cologne

Johannes Putzke

Agenda

- Introduction
- Basic Concepts
- Mathematical Notation
- Network Statistics

Textbooks

- Hanneman \& Riddle (2005) Introduction to Social Network Methods, available at $h t t p: / / f a c u l t y . u c r . e d u / \sim h a n n e m a n / n e t t e x t / ~$
- Wasserman \& Faust (1994): Social Network Analysis - Methods and Applications, Cambridge: Cambridge University Press.

Introduction

Basic Concepts

What is a network?

What is a Network?

- Actors / nodes / vertices / points
- Ties / edges / arcs / lines / links

What is a Network?

- Actors / nodes / vertices / points
- Computers / Telephones
- Persons / Employees
- Companies / Business Units
- Articles / Books
- Can have properties (attributes)
- Ties / edges / arcs / lines / links

What is a Network?

- Actors / nodes / vertices / points
- Ties / edges / arcs / lines / links
- connect pair of actors
- types of social relations
- friendship
- acquaintance
- kinship
- advice
- hindrance
- sex
- allow different kind of flows
- messages
- money
- diseases

What is a Social Network? - Relations among People

Folie:

What is a Network? - Relations among Institutions

- as institutions
- owned by, have partnership / joint venture
- purchases from, sells to
- competes with, supports
- through stakeholders
- board interlocks
- Previously worked for

> Image by MIT OpenCourseWare.

Why study social networks?

Example 2) Homophily Theory

	Male	Female
Male	123	68
Female	95	164

- Birds of a feather flock together
- See McPherson, Smith-Lovin \& Cook (2001)

	$0-13$	$14-29$	$30-44$	$45-65$	>65
$0-13$	212	63	117	72	91
$14-29$	83	372	75	67	84
$30-44$	105	98	321	214	117
$45-65$	62	72	232	412	148
>65	90	77	124	153	366

- age / gender \rightarrow network

Managerial Relevance - Social Network...

...vs. Organigram

Image by MIT OpenCourseWare.

SNA - A Recent Trend in Social Sciences Research

- Keyword search for,,social" + „network" in 14 literature databases

Source: Knoke, David (2007) Introduction to Social Network Analysis

SNA - A Recent Trend in IS Research

How to analyze Social Networks?

Example: Centrality Measures

- Who is the most prominent?
- Who knows the most actors? (Degree Centrality)
- Who has the shortest distance to the other actors?
- Who controls knowledge flows?

Example: Centrality Measures

- Who is the most prominent?
- Who knows the most actors?
- Who has the shortest distance to the other actors? (Closesness
Centrality)
- Who controls knowledge flows?

Example: Centrality Measures

- Who is the most prominent?
- Who knows the most actors
- Who has the shortest distanc the other actors?
- Who controls knowledge flows? (Betweenness Centrality)

Basic Concepts

Dyads, Triads and Relations

friendship
kinship

- actor
- dyad
- triad
- relation:
- collection of specific ties among members of a group

Strength of a Tie

- Social network
- finite set of actors and relation(s) defined on them
- depicted in graph/ sociogram
- labeled graph
- Strength of a Tie
- dichotomous vs. valued
- depicted in valued graph or signed graph (+/-)

Strength of a Tie

adjacent node to/from

incident node to

- Strength of a Tie
- nondirectional vs. directional
- depicted in directed graphs (digraphs)
- nodes connected by arcs
- 3 isomorphism classes
- null dyad
- mutual / reciprocal / symmetrical dyad
- asymmetric / antisymmetric dyad
- converse of a digraph
- reverse direction of all arcs

Walks, Trails, Paths

- (Directed) Walk (W)
- sequence of nodes and lines starting and ending with (different) nodes (called origin and terminus)
- Nodes and lines can be included more than once
- Inverse of a (directed) walk (W^{-1})
- Walk in opposite order
- Length of a walk

- How many lines occur in the walk? (same line counts double, in weighted graphs add line weights)
- (Directed) Trail
- Is a walk in which all lines are distinct
- (Directed) Path
- Walk in which all nodes and all lines are distinct
- Every path is a trail and every trail is a walk

Walks, Trails and Paths - Repetition

- $W=n 1$ I 1 n2 I2 n3 I4 n5 I6 n6
- n1
- n3
- W = n1 I1 n2 I2 n3 I4 n5 I4n3
- W = n1 I1 n2 I2 n3 I4 n5 I5 n4 I3 n3
- Path
- origin
- terminus
- Walk
- Trail

Reachability, Distances and Diameter

- Reachability
- If there is a path between
nodes n_{i} and n_{j}
- Geodesic
- Shortest path between two nodes
- (Geodesic) Distance d(i,j)
- Length of Geodesic (also called ,,degrees of separation")

Mathematical Notation and Fundamentals

Three different notational schemes

1. Graph theoretic
2. Sociometric
3. Algebraic

1. Graph Theoretic Notation

- N Actors $\left\{\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{g}}\right\}$
- $n_{1} \rightarrow n_{j}$ there is a tie between the ordered pair $\left.<n_{i}, n_{j}\right\rangle$
- $\mathrm{n}_{1} \rightarrow \mathrm{n}_{\mathrm{j}}$ there is no tie
- ($\mathrm{n}_{\mathrm{i}}, \mathrm{n}_{\mathrm{j}}$) nondirectional relation
- $\left\langle\mathrm{n}_{\mathrm{i}}, \mathrm{n}_{\mathrm{j}}\right\rangle$ directional relation
- $\mathrm{g}(\mathrm{g}-1)$ number of ordered pairs in $\left\langle\mathrm{n}_{\mathrm{i}}, \mathrm{n}_{\mathrm{j}}\right\rangle \quad$ directional network
- $\mathrm{g}(\mathrm{g}-1) / 2$ number of ordered pairs in nondirectional network
- L collection of ordered pairs with ties $\left\{1_{1}, \quad I_{2}, \ldots, I_{g}\right\}$
- G graph descriped by sets (N, L)
- Simple graph has no reflexive ties, loops

2. Sociometric Notation - From Graphs to

(Adjacency/Socio)-Matrices

Binary, undirected

Valued, directed

		If	III	IV	V	VI
I		2	0	0	0	0
II	0	0	4	0	0	0
III	0	3	0	5	4	0
IV	0	0	5	0	0	0
V	0	0	0	2	0	3
VI	0	0	0	1	4	0

2. Sociometric Notation

- X $\mathrm{g} \times \mathrm{g}$ sociomatrix on a single relation $g \times g \times R$ super-sociomatrix on R relations
- X_{R} sociomatrix on relation R
- $X_{\mathrm{ij}(\mathrm{r})}$ value of tie from n_{i} to n_{i} (on relation χ_{r}) where $\mathrm{i} \neq \mathrm{j}$

2. Sociometric Notation - From Matrices to Adjacency Lists and Arc Lists

Adjacency List

III II
III IV
III V
IV III
IV V
IV VI
V III
V IV
V VI
VIIV
VI IV

Network Statistics

Different Levels of Analysis

Measures at the Actor-Level:

Measures of Prominence: Centrality and Prestige

Degree Centrality

- Who knows the most actors? (Degree Centrality)
- Who has the shortest distance to the other actors?
- Who controls knowledge flows?

Degree Centrality I

Degree Centrality II

- Interpretation: opportunity to (be) influence(d)
- Classification of Nodes
- Isolates
- $\mathrm{d}_{\mathrm{i}}\left(\mathrm{n}_{\mathrm{i}}\right)=\mathrm{d}_{\mathrm{o}}\left(\mathrm{n}_{\mathrm{i}}\right)=0$
- Transmitters
- $\mathrm{d}_{\mathrm{l}}\left(\mathrm{n}_{\mathrm{i}}\right)=0$ and $\mathrm{d}_{\mathrm{o}}\left(\mathrm{n}_{\mathrm{i}}\right)>0$
- Receivers
- $\mathrm{d}_{\mathrm{l}}\left(\mathrm{n}_{\mathrm{i}}\right)>0$ and $\mathrm{d}_{\mathrm{o}}\left(\mathrm{n}_{\mathrm{i}}\right)=0$
- Carriers / Ordinaries
- $d_{1}\left(n_{i}\right)>0$ and $d_{0}\left(n_{i}\right)>0$

- Standardization of C_{D} to allow comparison across networks of different sizes: divide by ist maximum value

$$
C_{D}^{\prime}\left(n_{i}\right)=\frac{d\left(n_{i}\right)}{g-1}
$$

Closeness Centrality

- Who knows the most actors?
- Who has the shortest distance to the other actors? (Closesness Centrality)
- Who controls knowledge flows?

Closeness Centrality

	I II III IV V VI					
I	-	1	2	3	3	4
II	1	-	1	2	2	3
III	2	1	-	1	1	2
IV	3	2	1	-	1	1
V	3	2	1	1	-	1
VI	4	3	2	1	1	-

13
9
7
8
8
11

- Index of expected arrival time

$$
C_{C}\left(n_{i}\right)=\frac{1}{\sum_{j=1}^{g} d\left(n_{i}, n_{j}\right)}
$$

Reciprocal of marginals of geodesic distance matrix

- Standardize by multiplying (g-1)
- Problem: Only defined for connected graphs

Proximity Prestige

$$
P_{P}\left(n_{i}\right)=\frac{I_{i} /(g-1)}{\sum_{j=1}^{g} d\left(n_{j}, n_{i}\right) / I_{i}}
$$

- $I_{i /}(g-1)$

- number of actors in the influence domain of n_{i}
- normed by maximum possible number of actors in influence domain
- $\sum \mathrm{d}\left(\mathrm{n}_{\mathrm{j}}, \mathrm{n}_{\mathrm{i}}\right) / \mathrm{I}_{\mathrm{i}}$
- average distance these actors are to n_{i}

Eccentricity / Association Number

- Largest geodesic distance between a node and any other node
- $\max _{\mathrm{j}} \mathrm{d}(\mathrm{i}, \mathrm{j})$

Betweenness Centrality

- Who knows the most actors?
- Who has the shortest distance to the other actors?
- Who controls knowledge flows?
(Betweenness Centrality)

Betweenness Centrality

- How many geodesic linkings between two actors j and k contain actor i ?
- $\mathrm{g}_{\mathrm{jk}}\left(\mathrm{n}_{\mathrm{i}}\right) / \mathrm{g}_{\mathrm{jk}}$ probability that distinct actor n_{i}, involved in communication between two actors n_{j} and n_{k}

$$
C_{B}\left(n_{i}\right)=\frac{\sum_{j<k} g_{j k}\left(n_{i}\right)}{g_{j k}}
$$

- standardized by dividing through (g-1)(g-2)/2

Several other Centrality Measures

- ...beyond the scope of this lecture
- Status or Rank Prestige, Eigenvector Centrality
- also reflects status or prestige of people whom actor is linked to
- Appropriate to identify hubs (actors adjacent to many peripheral nodes) and bridges (actors adjacent to few central actors)
- attention: more common, different meaning of bridge!!!
- Information Centrality
- see Wasserman \& Faust (1994), p. 192 ff.
- Random Walk Centrality
- see Newman (2005)

Condor - Betweenness Centrality

(Actor) Contribution Index

messa g essen t-messa g esrecei ved
messa g exsen ++ messa g esrecei ved

Measures at the Group-(Global-)Level and Subgroup-Level

Diameter of a Graph and Average Geodesic Distance

- Diameter
- Largest geodesic distance between any pair of nodes
- Average Geodesic Distance
- How fast can information get transmitted?

Density

- Proportion of ties in a graph

High density (44\%)

Low density (14\%)

Density

$$
\Delta=\frac{L}{g(g-1) / 2}=\frac{L}{\binom{g}{2}}
$$

In undirected graph:
Proportion of ties

$\Delta=\frac{\sum_{i=1}^{g} \sum_{j=1}^{g} x_{i j}}{g(g-1)}$

In valued directed graph:
Average strength of the arcs

Group Centralization I

- How equal are the individual actors' centrality values?
- $\mathrm{C}_{\mathrm{A}}\left(\mathrm{n}_{\mathrm{i}}{ }^{*}\right) \quad$ actor centrality index
- $\mathrm{C}_{\mathrm{A}}\left(\mathrm{n}^{*}\right) \quad \max _{\mathrm{i}} \mathrm{C}_{\mathrm{A}}\left(\mathrm{n}_{\mathrm{i}}{ }^{*}\right)$
- $\sum_{i=1}^{s}\left[C_{A}\left(n^{*}\right)-C_{A}\left(n_{i}\right)\right]$ sum of difference between largest value and observed values
- General centralization index:

$$
C_{A}=\frac{\sum_{i=1}^{g}\left[C_{A}\left(n^{*}\right)-C_{A}\left(n_{i}\right)\right]}{\max \sum_{i=1}^{g}\left[C_{A}\left(n^{*}\right)-C_{A}\left(n_{i}\right)\right]}
$$

Group Centralization II

$$
\begin{gathered}
C_{D}=\frac{\sum_{i=1}^{g}\left[C_{D}\left(n^{*}\right)-C_{D}\left(n_{i}\right)\right]}{(g-1)(g-2)} \\
C_{C}=\frac{\sum_{i=1}^{g}\left[C_{C}^{\prime}\left(n^{*}\right)-C_{C}^{\prime}\left(n_{i}\right)\right]}{[(g-1)(g-2)](2 g-3)} \\
C B=\frac{\sum_{i=1}^{g}\left[C_{B}\left(n^{*}\right)-C_{B}\left(n_{i}\right)\right]}{(g-1)^{2}(g-2)}=\frac{\sum_{i=1}^{g}\left[C_{B}^{\prime}\left(n^{*}\right)-C_{B}^{\prime}\left(n_{i}\right)\right]}{(g-1)}
\end{gathered}
$$

Condor - Group Centralization

Subgroup Cohesion

- average strength of ties within the subgroup divided by average strength of ties that are from subgroup members to outsiders
- $>1 \rightarrow$ ties in subgroup are stronger

$$
\frac{\sum_{i \in N_{s}} \sum_{j \in N_{s}} x_{i j}}{g_{s}\left(g_{s}-1\right)}
$$

Connectivity of Graphs and Cohesive Subgroups

Connectivity of Graphs

Connected Graphs, Components, Cutpoints and Bridges

- Connectedness
- A graph is connected if there is a path between every pair of nodes

- Components
- Connected subgraphs in a graph
- Connected graph has 1 component
- Two disconnected graphs are one social network!!!

Connected Graphs, Components, Cutpoints and Bridges

Connected Graphs, Components, Cutpoints and Bridges

- Cutpoints
- number of components in the graph that contain node n_{j} is fewer than number of components in subgraphs that results from deleting n_{j} from the graph
- Cutsets (of size k)
- k-node cut
- Bridges / line cuts
- Number of components...that contain line I_{k}

Node- and Line Connectivity

- How vulnerable is a graph to removal of nodes or lines?

Point connectivity /
Node connectivity

- Minimum number of k for which the graph has a k node cut
- For any value <k the graph is k-node-connected

Line connectivity / Edge connectivity

- Minimum number λ for which for which graph has a λ-line cut

Cohesive Subgroups

Cohesive Subgroups, (n-)Cliques, n-Clans, n-Clubs, kPlexes, k-Cores

- Cohesive Subgroup
- Subset of actors among there are relatively strong, direct, intense, frequent or positive ties
- Complete Graph
- All nodes are adjacent
- Clique
- Maximal complete subgraph of three or more nodes
- Cliques can overlap
- $\{1,2,3\}$
- $\{1,3,4\}$
- $\{2,3,5,6\}$

Cohesive Subgroups, (n-)Cliques, n-Clans, n-Clubs, kPlexes, k-Cores

- n-clique
- maximal subgraph in which $d(i, j) \leq n$ for all n_{i}, n_{j}
- 2 : cliques: $\{2,3,4,5,6\}$ and $\{1,2,3,4,5\}$
- intermediaries in geodesics do not have to be n-clique members themselves!
- n-clan
- n-clique in which the $\mathrm{d}(\mathrm{i}, \mathrm{j}) \leq \mathrm{n}$ for the subgraph of all nodes in the n-clique
- 2-clan: $\{2,3,4,5,6\}$
- n-club
- maximal subgraph of diameter n

- 2-clubs: $\{1,2,3,4\}$; $\{1,2,3,5\}$ and $\{2,3,4,5,6\}$

Cohesive Subgroups, (n-)Cliques, n-Clans, n-Clubs, kPlexes, k-Cores

- Problem: vulnerability of n-cliques

- k-plexes

- maximal subgraph in which each node is adjacent to not fewer than $\mathrm{g}_{5}-\mathrm{k}$ nodes („maximal": no other nodes in subgraph that also have $\left.d_{s}(i) \geq\left(g_{s}-k\right)\right]$
- k-cores
- subgraph in which each node is adjacent to at least k other nodes in the subgraph

Analyzing Affiliation Networks

Affiliation Matrix, Bipartite Graph and Hypergraph, Rate of Participation, Size of Events

Two-mode network / affiliation network / membership network / hypernetwork

- nodes can be partitioned in two subsets
- N (for example g persons)
- M (for example h clubs)
- depicted in Bipartite Graph
- lines between nodes belonging to different subsets

Affiliation Matrix, Bipartite Graph and Hypergraph, Rate of Participation, Size of Events

Affiliation Matrix (Incidence Matrix)

- Connections among members of one of the modes based on linkages established through second mode
- gactors, h events
- $A=\left\{a_{i j}\right\} \quad(g \times h)$

Event

	Football	Ballet	Tennis
Peter	1		1
Pat		1	
Jack	1		
Ann		1	1
Kim	1		1
Mary		1	1

rate of
participation

1
1
1
2
2
2

size of event | 3 | 3 | 4 |
| :--- | :--- | :--- |
| | | |

Affiliation Matrix, Bipartite Graph and Hypergraph, Rate of Participation, Size of Events

- Sociomatrix [(g+h) $\times(g+h)$]

	Peter	Pat	Jack	Ann	Kim	Mary	Football	Ballet	Tennis
Peter	-	0	0	0	0	0	1	0	1
Pat	0	-	0	0	0	0	0	1	0
Jack	0	0	-	0	0	0	1	0	0
Ann	0	0	0	-	0	0	0	1	1
Kim	0	0	0	0	-	0	1	0	1
Mary	0	0	0	0	0	-	0	1	1
Football	1	0	1	0	1	0	-	0	0
Ballet	0	1	0	1	0	1	0	-	0
Tennis	1	0	0	1	1	1	0	0	-

Affiliation Matrix, Bipartite Graph and Hypergraph, Rate of Participation, Size of Events

- Homogenous pairs and heterogenous pairs
- $X_{r}^{N}(g \times g), X_{r}^{M}(h \times h), X_{r}^{N, M}(g \times h), X_{r}^{N, M}(h \times g)$
- One-mode sociomatrices X^{N} [and X^{M}]
- rows, colums: actors [events];
- x_{ij} : co-membership [number of actors in both events] (main diagonal meaningful, e.g. total events attended by an actor)

	Peter	Pat	Jack	Ann	Kim	Mary
Peter	2	0	1	1	2	1
Pat	0	1	0	1	0	1
Jack	1	0	1	0	1	0
Ann	1	0	0	2	1	1
Kim	2	0	1	1	2	1
Mary	1	0	0	1	1	2

Affiliation Matrix, Bipartite Graph and Hypergraph, Rate of Participation, Size of Events

- Event Overlap / Interlocking Matrix

	Football	Ballet	Tennis
Football	3	0	2
Ballet	0	3	1
Tennis	2	1	4

Cohesive Subsets of Actors or Events

- clique at level c (cf. also k-plexes, n-cliques etc.)
- subgraph in which all pairs of events share at least c members
- connected at level q
- subset in which all actors in the path are comembers of at least $q+1$ events

Folie:
74

When is Which Centrality Measure Appropriate?

Source: Borgatti, Stephen P. (2005) Centrality and
Network Flow, Social Networks 27, p. 55-71

Assumptions of Centrality Measures

- Which things flow through a network and how do they flow?

	Transfer	Serial	Parallel
Walks	Money exchange	Emotional support	Attitude influencing
Trails	Used Book	Gossip	E-mail broadcast
Paths	Mooch	Viral infection	Internet name- server
Geodesics	Package Delivery	Mitotic reproduction	<no process>

Source: Borgatti, Stephen P. (2005) Centrality and
Network Flow, Social Networks 27, p. 55-71

Assumptions of Centrality Measures

- Example: Betweenness Centrality
- Information travels along the shortest route

	Transfer	Serial	Parallel
Walks	Random Walk Betweenness	$?$	Closeness Degree Eigenvector
Trails	$?$	$?$	Closeness Degree
Paths	$?$	$?$	Closeness Degree
Geodesics	Closeness Betweenness	Closeness	$?$

Adequacy of Centrality Measures

	Transfer	Serial	Parallel
Walks	Money exchange		Attitude influencing
Trails		E-mail broadcast	
Paths		Internet name- server	
Geodesics	Package Delivery	Mitotic reproduction	<no process>

Source: Borgatti, Stephen P. (2005) Centrality and
Network Flow, Social Networks 27, p. 55-71

How to Calculate Geodesic Distance Matrices?

From Adjacency Matrices to (Geodesic) Distance Matrices I - (Reachability)

Repetition: Matrix Multiplication

- XY = Z

- $\mathrm{z}_{\mathrm{ij}}=\sum_{n=1}^{h} \mathrm{x}_{\mathrm{in}} \mathrm{y}_{\mathrm{nj}}$

From Adjacency Matrices to (Geodesic) Distance Matrices II - (Reachability)

	1	II	II IV		V	VI
I	0	1	0	0	0	0
II	1	0	1	0	0	0
III	0	1	0	1	1	0
IV	0	0	1	0	1	1
V	0	0	1	1	0	1
VI	0	0	0	1	1	0

Power Matrix: Multiplying adjacency matrices

- $\quad x_{i k} x_{k j}=1$ only if lines $\left(n_{i}, n_{k}\right)$ and ($\mathrm{n}_{\mathrm{k}}, \mathrm{n}_{\mathrm{j}}$) are present, i.e. $\mathrm{X}^{[2,3,4]}$ counts the number of walks $\left(n_{i} n_{k} n_{j}\right)$ of length 1 [2,3,4] between nodes n_{i} and n_{j}

	I	II	III	IV	V	VI
I	1	0	1	0	0	0
II	0	2	0	1	1	0
III	1	0	3	1	1	2
IV	0	1	1	3	2	1
V	0	1	1	2	3	1
VI	0	0	2	1	1	2

From Adjacency Matrices to (Geodesic) Distance Matrices II - (Reachability)

- $\mathrm{X}_{\mathrm{i}}>0$?
\rightarrow two nodes can be connected by paths of length $\leq(g-1)$
- Calculate $X^{[\Sigma]}=X+X^{2}+X^{3}+\ldots+X^{g-1}$
- $X^{[\Sigma]}$ shows total number of walks from n_{i} to n_{i}

	I	II	III	IV	V	VI
I	1	0	1	0	0	0
II	0	2	0	1	1	0
III	1	0	3	1	1	2
IV	0	1	1	3	2	1
V	0	1	1	2	3	1
VI	0	0	2	1	1	2

From Graphs to (Geodesic Distance)-Matrices
 (Reachability) - Geodesic Distance

- observer power matrices
- first power p for which the (i, j) element is non-zero gives the shortest path
- $\mathrm{d}(\mathrm{i}, \mathrm{j})=\min _{\mathrm{p}} \mathrm{x}_{\mathrm{ij}}^{[\mathrm{p}]}>0$

From Graphs to (Geodesic Distance)-Matrices
 (Reachability) - Geodesic Distance

Binary, undirected

	1	II	III	IV	V	VI
I	-	1	2	3	3	4
II	1	-	1	2	2	3
III	2	1	-	1	1	2
IV	3	2	1	-	1	1
V	3	2	1	1	-	1
VI	4	3	2	1	1	-

MIT OpenCourseWare
http://ocw.mit.edu
15.599 Workshop in IT: Collaborative Innovation Networks

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

