Seagate Technologies

- Seagate's strategy and operations
- Seagate's risks
- Capacity planning
- Capital investment decision and hedging
- Wrap up

Background: DD market

- Technology driven
- Short product life cycles
- Dramatic cost reductions
- PC markets cost and size
- Servers and work stations speed and reliability
- Competitors Quantum, Western Digital and OEM's

Process Flow Diagram

What is Seagate's competitive strategy?

- Largest independent DD manufacturer
- Compete in all market segments, vertically integrated
- Innovation and performance first to market
- Low cost through high-volume production

What is Seagate's competition?

- Independents Quantum, Western Digital
 - Smaller, less integrated
- OEM's
 - Deep pockets, captive customers

Vertical Integration vs. Leverage

Volume/Sales

What are the major risks?

• Demand uncertainty

- Volume, mix and timing
- Depends on competition and technology
- Foreign exchange uncertainty
- Production and supply uncertainties
- Pricing uncertainty due to oversupply

Exhibit 3: Price Trends of Hard Drives versus Semiconductor Memory

Product Life Cycle is short (essentially 1 year)

Coordinated Capacity Planning

- Demand plan set six months ahead of need, comes from Corporate
- MPS allocates production to plants
- CRP process assures capacity is available
- MRP process assures material is available

Exhibit 5: Production & Capacity Planning

Exhibit 4: Demand Forecast

Realized demand for current capacity plan?

Current Capacity Plan

Evaluation

- Criteria?
 - Capital investment
 - Profit
 - Lost sales
 - ROI

Parameters

- Assume linear capital costs (\$30, \$20 and \$80 per unit)
- Assume profit margins of \$400 and \$300/unit
- Assume cost of lost sales = ???

Base Case Analysis

 $E[profit] = .25 \times (\$400 \times 150,000 + \$300 \times 300,000)$ $+.50 \times (\$400 \times 300,000 + \$300 \times 300,000)$ $+.25 \times (\$400 \times 300,000 + \$300 \times 250,000)$ = \$191,250,000

Investment = \$9*mm* + \$6*mm* + \$48*mm* = \$63,000,000 *FixedCost* = \$40*mm*

$$E[Lostsales] = .25 \times (\$300 \times 50,000)$$

+.25 \times (\\$400 \times 150,000) = \\$18,750,000

Demand Cheetah

Demand Cheetah

Evaluation of Alternatives

Cheetah Assembly	Barracuda Assembly	Test Capacity	Investment	E[Profit]	ROI
300	300	600	\$63mm	\$191mm	204%
450	350	700	\$76.5mm	\$210mm	175%
450	350	600	\$68.5mm	\$202.5mm	196%
350	350	600	\$65.5mm	\$200mm	205%

Hedging Capacity Plan

Learning points

- Risk differences between leveraged versus vertically integrated business models
- Production and capacity planning in dynamic and uncertain environment
- Value of accounting for uncertainty in capacity planning

Hedging: Increasing Cheetah Capacity