
After The Race 

The Boston Marathon is a local institution with over a century of history and tradition. 
The race is run on Patriot’s Day, starting on the Hopkinton green and ending at the 
Prudential Center in Boston’s Back Bay, 26.2 miles later.  Key milestones along the route 
are Wellesley College, Heartbreak Hill, Kenmore Square and Commonwealth Avenue.  
In a typical year as many as ten thousand runners will participate. 

Planning for the race presents several logistical challenges for the race organizers. One 
major challenge is at the finish line. Runners as they cross the line may require a variety 
of services. 

A few will need medical attention for problems ranging from blisters and leg cramps to 
severe dehydration and possibly heat exhaustion. The less severe problems, like blisters, 
can be handled by nurse practitioners, and do not demand immediate attention. The more 
severe can often not wait. A runner with cramps and dehydration will need a cot and oral 
liquids; a runner in worse shape may need intravenous fluids and possibly even a trip to a 
nearby emergency room. 

Runners who are not in need of medical attention will need services so as to avoid the 
subsequent need for medical resources.  At the finish runners need an area to continue to 
walk so that their muscles don’t cramp. After a while, they will want a place to sit and 
rest, where they can start the process of replenishing the nutrients and liquids that their 
bodies lost during the race. They may often need to use rest rooms, as well as phones. 
Finally, they will need to retrieve their clothes from the storage vans that have traveled 
from Hopkinton to the Prudential center, and then to find a place to change.  

In 1978, 4391 runners started; there were 3872 male finishers and 186 female finishers 
within 4 hours of the start time, as shown below  

Time Window Male Finishers Female Finishers Total Finishers 
2:10 – 2:20 33 0 33 
2:20 – 2:30 129 0 129 
2:30 – 2:40 316 0 316 
2:40 – 2:50 629 5 634 
2:50 – 3:00 942 24 966 
3:00 – 3:10 507 22 529 
3:10 – 3:20 475 43 518 
3:20 – 3:30 448 33 481 
3:30 – 3:40 217 33 250 
3:40 – 3:50 117 15 132 
3:50 – 4:00 59 11 70 

The challenge is to design a service system to handle the runners as they finish the race. 
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Basic Queueing Theory 

Notation 
We categorize single-stage queuing systems by a three-component descriptor, A/B/m, 
where A denotes the distribution of inter-arrival times, B denotes the distribution of 
service times, and m is the number of servers.  The notation M denotes an exponential 
distribution (Memory-less or Markovian) and G denotes a general distribution (for i. i. d. 
times, we denote this by GI).  
When there is a maximum limit on the number of customers that can be in the system, we 
describe the queuing system by a four-component descriptor, A/B/m/k, for k being the 
limit. 

Assumptions and Analysis for M/M/1 queue 

•	 Single server 

•	 Memory-less or Markovian arrival process: At any time t, the probability of an arrival 
in the next instant is independent of all past history (i. e., memory-less).  That is, for 
"small" ∆t, the probability that the next arrival occurs in the time interval (t, t+ ∆t) 
equals λ∆t, where λ is the arrival rate. 

The number of arrivals in a time interval of length τ is a Poisson random variable 
with mean λτ, and with variance λτ. The interarrival time between successive 
arrivals is an exponentially-distributed random variable with mean 1/λ, and with 
variance (1/λ)2. 

•	 Memory-less or Markovian service process:  Suppose the service process for a job 
starts at time 0 and has not completed by time t.  Then, for "small" ∆t, the probability 
that the service completes in the time interval (t, t+ ∆t) equals µ∆t, where µ is the 
service rate. 

The service time is an exponentially-distributed random variable with mean 1/µ, and 
with variance (1/µ)2. 
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•	 An analysis of this queueing system is based on solving the "equations for motion" or 
probability transition equations for this system.  Let Pr[n, t] denote the probability 
that there are n jobs or customers in the system at time t.  Then the transition 
equations can be derived from the following general form (for small ∆t): 

Pr[n, t + ∆t] = Pr[n, t ] * (1 - λ∆t - µ∆t) + µ∆t * Pr[n+1, t ] + λ∆t * Pr[n-1, t ] 

•	 Let Π(n) = Pr[n, t = •] be the steady state probability for queue lengths.  Then, key 
results are as follows: 

Π(0) = 1 - ρ 

Π(n) = ρn (1 - ρ) 


where ρ = λ/µ = the utilization level for the queue. 


•	 Steady-state performance measures: 

L = expected number in system  = ρ/(1 − ρ) 

Q = expected number in queue (not in service) = ρ2/(1 − ρ) 

W  = expected waiting time in system =1/(µ − λ) = [ 1/(1 − ρ) ] ∗ [1/µ] 

D = expected waiting time in queue = λ/µ(µ − λ) = [ ρ/(1 − ρ) ] ∗ [1/µ] 

Note that L = λW, and Q = λD; i. e., Little's Law. 

•	 M/M/1 model can be extended to multiple, parallel servers; to finite waiting rooms;  
to queue-dependent arrival or service rates. 

•	 Model is useful for gross-level understanding of congestion effects, and for 
examining design or planning tradeoffs. 
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Approximation for General Arrival Process, General Service Times (GI/G/1) 

•	 For a GI/G/1 queue, we assume we know the mean and coefficient of variation (std. 
deviation/mean) for the interarrival times, and the mean and coefficient of variation 
for the service times ( the “inter-completion” time): 

1/λ	  mean interarrival time 
1/µ   mean service time 

SCVa squared coefficient of variation for interarrival times 

SCVs squared coefficient of variation for service times 


Note: SCV = 1 for exponential random variables (as occurs in M/M/1 model) 

•	 We assume that utilization is less than one:  ρ = λ/µ  < 1; and we assume no limit on 
the queue size. 

•	 A useful approximation is as follows: 

D = expected waiting time in queue = [ ρ/(1 − ρ) ] ∗ [1/µ] * (SCVa + SCVs)/2 

From this approximation we get the other common performance measures: 
W  = expected waiting time in system = D + 1/µ


L = expected number in system  = λW = 
λ * [D + 1/µ ] 


Q = expected number in queue (not in service)  


= λD = [ρ2/(1 − ρ)] * [(SCVa + SCVs)/2 ] 


•	 To model networks of queues, this model is often used as a building block, where the 
departure stream from one queue is the arrival stream for another.  Here we need 
approximate the SCV for the departure stream: 

SCVd = (1 - ρ2) SCVa + ρ2 SCVs 
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Assumptions and Analysis for M/G/• Queue 

•	 Poisson arrivals with arrival rate λ; any distribution for service times, where τ is the 
mean service time; and an unlimited number of servers. 

•	 The steady-state number of customers in the system (and in service) is a Poisson 
random variable with mean equal toλτ, and with variance equal to λτ. That is the 
steady-state probabilities are as follows: 

Pr [# in system = n] = (λτ)n * e-λτ/n ! for n = 0, 1, 2, .... 

•	 For λτ > 20 or 30, this distribution is well approximated by a normal distribution. 

Assumptions and Analysis for M/G/k/k Queue 

•	 Poisson arrivals with arrival rate λ; any distribution for service times, where τ is the 
mean service time; k servers; and a limit of at most k customers in the system at any 
point in time.  That is, there is no waiting room, and a customer either enters service 
upon arrival or is lost due to the system being full (busy). 

•	 The steady-state probabilities for the number of customers in the system (and in 
service) are as follows: 

λτ n( )  
Pr [ #  in system =  n ] = n !  for n = 0, 1, 2, .... k 

λτ ik ( )∑ i!
i=0 

•	 Pr [ # in system = k] is the "loss" probability:  that is, the probability that a customer 
arrives and finds the system full. 

•	 If the system is designed to have a very small loss probability, then the M/G/• model 
can be used to approximate the M/G/k/k system. 
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Assumptions and Analysis for M/M/k Queue 

Poisson arrivals with arrival rate λ ; exponential service times with mean service rate µ 
(mean service time = 1/µ ); k servers. The system utilization is defined as ρ = λ /kµ 

Expected time in queue, 
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Approximation for M/G/k Queue 

•
 A useful approximation is as follows: 

D = expected waiting time in queue 

= expected waiting time in queue for M/M/k queue * [(1 + SCVs)/2 ] 

From this approximation we can get the other common performance measures. 
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Applications 

• Facility planning for human service systems , e. g., hospitals 

• Inventory management for one-for-one policies, e. g., spares provisioning. 

• Capacity planning for telemarketing centers 

• Fleet sizing for rail cars 

• Crew planning for tending multiple machines (e.g., for repair, setup, loading) 
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