Queueing Model to Design a Lean System

- Context and Intent
- What does the model do?
- What do you find?
- How might a design team use the tool

Context: Automobile Assembly Line

- Organized into line segments, separated by de-coupling buffers
- Each line segment operates as an independent mini-company:
- 20 - 40 work stations in series
- 30 - 50 people
- 1 group leader, 3 - 4 team leaders, 6 - 10 members per team

What are the Design Issues?

- How many stations per segment?
- For given segments, how big should the buffers be?
- What if's:
- Reduce variability?
- Increase overspeed?

Spreadsheet Model

- Intent - provide a vehicle for learning, understanding and exploration; developing insights into key trade-offs; identifying key leverage points
- Provides rough-cut analysis, and would be used along with a more detailed simulation to validate design

Upstream Segment

Downstream Segment

Queueing Model

- Single server queue, finite waiting room = buffer size
- Assumes Poisson arrivals, exponential service times
- Reports throughput rate and average buffer inventory

Questions Being Addressed by this Spreadsheet

1. What is the expected number of completed cars per day?
2. For a given accumulator size, what is the probability that the downstream segment is starved?
3. For a given accumulator size, what is the probability that the upstream segment is blocked?
4. What are the performance characteristics (MTBF, MTTR, efficiency) of the segments?

Key Assumptions

1. Stations modeled as bernoulli random variables; stations are i.i.d.
2. Segments modeled as binomial random variables.
3. Accumulator is modeled as a $M / M / 1 / \mathrm{c}$ queue where c is the accumulator size +1
4. Shaded cells denote user-specified inputs, unshaded cells denote final or intermediate outputs

Upstream Segment	
p (station failure) E[\# cycles until failure]	0.0018
	550
\# stations/segment p(segment failure) p(upstream segment starved)	33
	0.0583
	0.07
TAKT time (seconds/car) \# hrs/shift \# shifts/day Maximum \# cars/day	100
	8
	2
	576
MTBF MTTR Stand-alone efficiency	17.1565
	1
	0.9449
Results Accumulator size P(downstream seg. starved) P(upstream seg. blocked) Expected stock level E[\# finished cars/day]	
	15
	0.08
	0.04
	6.06
	483.88

Downstream Segment

$\mathrm{p}($ station failure $)$	
$\mathrm{E}[\#$ cycles until failure $]$	0.0018

Explanation

Probability that a station experiences a minor failure during a cycle Expected number of production cycles until a minor failure at station
\# stations/segment p(segment failure)

The number of stations that comprise a segment
The probability that a segment fails during a cycle The probability that the upstream segment is starved

TAKT time (seconds/car)	103
\# hrs/shift	8
\# shifts/day	2
Maximum \# cars/day	559.2233

The cycle time of each station, measured in seconds The number of hours of production per shift
The number of production shifts per day The maximum number of cars processed per day

Mean number of cycles between segment failures (assumes no idling) Mean number of cycles required to repair segment The efficiency of the segment (assumes no idling)

The maximum number of cars that can be held in the accumulator
The probability that the downstream stage is starved
The probability that the upstream stage is blocked The expected number of cars in the accumulator
The expected number of cars completed each day
Copyright Stephen C. Graves 2005

Basic Relationships

$\operatorname{Pr}($ station fails per cycle $)=1 / 550=0.0018$
$\operatorname{Pr}($ segment fails per cycle $)=\left(1-(1-1 / 550)^{33}\right)=0.0583$
$M T B F=\frac{1}{\operatorname{Pr}(\text { segment fails per cycle })}=17.2$
$M T T R=1$
Efficiency $=\frac{M T B F}{M T B F+M T T R}=0.9449$

Queueing Metaphor

Copyright Stephen C. Graves 2005

Arrival Process

$\lambda=\frac{(1-\operatorname{Pr}[\text { segment fails }])(1-\operatorname{Pr}[\text { upstreamstarved }])}{\text { Tat }}$ Takt time (sec's/car)

For base case

$$
\lambda=\frac{(1-.0583)(1-.07)}{100 \mathrm{sec} / \mathrm{car}}=.0088 \mathrm{car} / \mathrm{sec}=.528 \mathrm{car} / \mathrm{min}
$$

Service Process

$$
\mu=\frac{(1-\operatorname{Pr}[\text { segment fails }])}{\text { Takt time (sec's/car) }}
$$

For base case
$\mu=\frac{(1-.0583)}{103 \mathrm{sec} / \mathrm{car}}=.0091 \mathrm{car} / \mathrm{sec}=.546 \mathrm{car} / \mathrm{min}$

What do you find?

- Vary size of line segment?
- Vary the overspeed?
- Vary the process variation?

Stations/ segment	Buffer	Stock	Thruput per day	segments
25	12	4.9	484	12
33	15	6.1	484	9
40	20	7.9	484	8
50	37	12.9	484	6

Copyright Stephen C. Graves 2005

Takt time	Buffer	Stock	Thruput /day	Stations
103	24	7.8	484	32
100	15	6.1	484	33
97	12	5.3	484	34
95	10	4.6	484	35
90	8	4.0	484	37

Copyright Stephen C. Graves 2005

Cycles/ failure	Buffer	Stock	Thruput/ day
250	100	20.5	468
350	45	14.6	484
450	27	10.1	484
550	15	6.1	484
650	13	5.3	484
750	12	4.5	484

Copyright Stephen C. Graves 2005

Conclusion

- How might a design team use the tool?
- Illustrative design trade off - buffer requirements vs. size of segment
- Rough cut tool for exploratory analysis and what if's

