

The Use of Operations Research Techniques to Improve the Design of a Hewlett-Packard Printer Production Line

Mitchell Burman

Analytics' Focus

Analytics Operations Engineering

Quantitative Analysis

- Inventory Optimization
- Forecasting & Scheduling
- SKU Rationalization
- Distribution Efficiency
- Quality Engineering
- Supply-Chain Management

Selected Results (Confidential)

Supply Chain Design & Mgt		SKU Rationalization & Pricing	
IBMSamsoniteBoeing	\$750m Savings\$25m Savings\$9m Inventory Reduction	UnisourceBroderSuperior	>\$10m Profit Increase* \$30m Inventory Reduction >10% Profit Increase
Productivity		Fleet Management	
	Toddetivity	LIGG(wanagement

* Estimates based on work in progress

Selected Analytics Clients

- Acme Steel
- Active Aero (Berkshire)
- Alcan
- Atkins (Parthenon)
- Baxter Healthcare
- BICC General
- Boeing
- Boston Scientific
- Broder Brothers (Bain)
- Cambridge Industries (Bain)
- DESA (HIG)
- Endres (JMH Capital)
- Flight Options

- FluidSense
- GMAC
- Harley-Davidson
- Hewlett Packard
- ICI (Imperial Chemical)
- 3i (Advent)
- Intel
- J.M. Huber Corporation
- Johnson & Johnson
- Karsten Textilia (Brazil)
- Kraton Polymers (TPG)
- Lockheed Martin
- Lone Star Industries
- Motorola
- Northrop Grumman

- Nutraceutical (Bain)
- Palm Coast Data (Tinicum)
- Primedica
- Raytheon/Flight Options
- Samsonite (Bain)
- SAPPI Paper
- Superior Essex
- Team Products (HIG)
- Thomson Legal & Regulatory
- Truck Mfr. (BCG)
- Unisource (Bain)
- US Can (Berkshire)
- Western Mining (Australia)
- Wolverine (Parthenon)

Presentation Outline

- Business Need
- Application of Technology
- Benefits
- Summary

- HP Desk Jet Printer
- \$1,000,000 in demand
- Encroaching competition (Canon)

Business Need

HP background

- Vancouver Division (VCD) background
- VCD Business requirements

"HP Way"

VCD Business Strategy

- Productivity improvement to meet business needs
- Automation for attaining productivity objectives

Eclipse Project Design

Buzacott Approximation

Single Machine
$$E_1 = \frac{MTTF}{MTTF + MTTR} = 0.98$$

MTTF = Mean Time to Fail MTTR = Mean Time to Repair

Buzacott Approximation

One Year Later

Business Situation Statement

- Eclipse sub-assembly performance insufficient
- Simulation not working
- Method needed to quickly assess alternative system architectures

Total System Buffer Space

Total System Buffer Space

Total System Buffer Space

Total System Buffer Space

Total System Buffer Space

Early paradigm

- Large Buffers
- Buffers Unnecessary
- The truth is in between

Important System Phenomena

- Long multi-stage process
- Failing machines
- Different operation times
- Finite storage space

Application of Technology

Goal: Rapidly predict performance of a production system

- Many alternatives (695,784,701,952)
- Long execution times make simulation awkward

Development of Technology

- Analytical method needed for rapid system evaluation
- Difficulty: Large state space makes brute force numerical solution of Markov chain impractical

Known Two Stage Models

Development of Decomposition

Analysis of large system by breaking it into smaller systems

Solution Approach

- Analytical systems performance model was developed
- Hardware changes
- Critical operational targets

Cost of Changes ~\$1,000,000

Implementation Results

- New system architecture
- System validation
- New methodology for system optimization

Short-Term Benefits

- Eclipse system throughput increased 25%
- \$280 million in incremental revenue
- Incremental pen and media revenue
- Lower production costs

Long-Term Benefits

- More robustness and predictability for all new manufacturing system designs
- Faster production ramps
- Greater throughput and productivity

Potential long-term financial benefits far outweigh the short-term

Summary

- Realized \$280 million incremental revenue
- Captured incremental market share at critical time which increased
- Leveraged the methodology into future system designs