Reducing the Cost of Demand Uncertainty through Accurate Response to Early Sales

> Fisher and Raman 1996 Operations Research, vol. 44 (1), 87-99

> > Presentation by Hongmin Li

This summary presentation is based on: Fisher, Marshall, and A. Raman. "Reducing the Cost of Demand Uncertainty Through Accurate Response to Early Sales." *Operations Research* 44, no. 1 (1996): 87-99.

Fashion Industry

> Long lead time
> Unpredictable demand
> Complex Supply Chain
> Enormous inventory loss

25% of retail sales

> Lost Sales

Quick Response

- Lead time reduction through
 - Efforts in IT,
 - Logistics improvement
 - Reorganization of production process
- Complications
 - Production planning (how much and when)
 - Need a method to incorporate observed demand information

This Paper

- Provides a model for response-based production planning
 A two-stage stochastic program
 Use relaxations to obtain feasible solutions and bounds
- > Implementation at Sport Obermeyer

Time Line

Notation

Notation (2)

(For notation descriptions, see page 90 of the Fisher and Raman paper)

Model

Expected cost of demand mismatch:

$$c_{i}(x_{i}, D_{i}) = O_{i}(x_{i} - D_{i})^{+} + U_{i}(D_{i} - x_{i})^{+}$$

$$c(x, D) = \sum_{i=1}^{n} c_{i}(x_{i}, D_{i})$$

$$E_{D|D_{0}}c(x, D) = \int_{0}^{\infty} c(x, D)h(D \mid D_{0})dD$$

Choose x_0 , observe D_0 , then choose x to minimize total over and under production cost:

(P)
$$Z^* = \min_{x_0 \ge 0} Z(x_0) = E_{D_o} \min_{x_0 \ge 0} E_{D|D_0} c(x, D)$$
$$\sum_{i=1}^n x_i \le K + \sum_{i=1}^n x_{i0}$$

(P²)
$$Z^{1}(x, D_{0}) = E_{D|D_{0}}c(x, D)$$
$$Z^{2}(x_{0}, D_{0}) = \min_{x \ge x_{0}} Z^{1}(x, D_{0})$$
$$\sum_{i=1}^{n} x_{i} \le K + \sum_{i=1}^{n} x_{i0}$$

 $C_i(x_i, D_i)$ is convex in x_i \Rightarrow c(x, D) convex in x \Rightarrow Z¹(x, D₀) convex in x \Rightarrow Z² convex in x_0

However, no closed form expression for x in D_0 , so convex opt. is not tractable

Approximation to P

"Replace the capacity constraint in 2nd period with a lower limit on total 1st period production"

$$x_0^*$$
 - optimal value of x_0

Define
$$L^* = \sum_{i=1}^{n} x_{i0}^*$$

$$W(L) = \min_{x_0 \ge 0} E_{D_0} \min_{x \ge x_0} E_{D|D_0} c(x, D)$$
$$\sum_{i=1}^n x_{i0} = L \sum_{i=1}^n x_i \le K + \sum_{i=1}^n x_{i0}$$

$$\bigvee_{i=1}^{m} \overline{Z}(x_{0}) \qquad x_{0} \ge 0$$

$$\sum_{i=1}^{n} x_{i0} = L \quad where \quad \overline{Z}(x_{0}) = \sum_{i=1}^{n} E_{D_{i0}} \min_{x_{i} \ge x_{i0}} E_{Di|D_{i0}} c_{i}(x_{i}, D_{i})$$

(P)

Solve (P) for a Given L

1. Given $h_i(D_i|D_{i0})$, $x_i^*(D_{i0}) = \operatorname{argmin} c_i(x_i, D_i)$ (opt. newsboy solution) $x_i = \max(x_i^*(D_{i0}), x_{i0})$ solves $\min E_{Di|Di0} c_i(x_i, D_i)$ Then $\underline{Z}(x_0)$ can be computed using numerical integration

2. If D_{i0} and D_i are positively correlated, There exists a D_{i0}^* s.t. for $D_{i0} \leq D_{i0}^*$, $x_i = x_{i0}$ and for $D_{i0} > D_{i0}^*$, $x_i = x_i^*$ (D_{i0}) Partials of \underline{Z} can be approximated with differences => x_{i0}^*

$$\overline{W}(L) = \min \overline{Z}(x_0) \qquad x_0 \ge 0$$

$$\sum_{i=1}^n x_{i0} = L \quad where \quad \overline{Z}(x_0) = \sum_{i=1}^n E_{D_{i0}} \min_{x_i \ge x_{i0}} E_{Di|D_{i0}} c_i(x_i, D_i)$$

(P)

Choosing L

- > x_0 (L) value of x_0 that solves P with given L
- > Use Monte Carlo generation of D_0 to evaluate $Z(x_0 (L))$
- > Choose L by line search algorithm to the problem $min_{L>=0} Z(x_0 (L))$

Lower bounds on W(L)

Relaxing the constraint $x \ge x_0$, we get:

2)
$$\overline{W}_{2}(L) = E_{D_{0}} \min_{x \ge 0} E_{D|D_{0}} c(x, D)$$
$$\sum_{i=1}^{n} x_{i} \le K + L$$

(<u>P</u>₂)

<u>W(L)</u> is a lower bound

- <u>W₂(L) is a lower bound (a constrained Newsboy problem that can be solved with lagrangian methods.)</u>
- > $\underline{W}(L)$ is smallest when L=0, $\underline{W}_2(L)$ is largest when L=0

 $\Rightarrow \min_{L>=0} \max (\underline{W}(L), \underline{W}_2(L))$ is a nontrivial bound on Z^*

Minimum Production Quantities

Let S_j defines the sets of products that satisfies a min. initial production level M_j^o , j=1,...,m

(See equations on page 92, left hand column, of Fisher and Raman paper)

The RHS is evaluated by the following problem:

(See equations on page 92, left hand column, of Fisher and Raman paper)

can be solved similarly as P²

Minimum Production Quantities

The modified problem can be solved as before with 2 changes:

- Only allow movement away from $x_d = 0$ to a point that satisfies the min production constraints
- Change the estimation of the derivative of W(L) w.r.t. x_i^j at $x_i^j = 0$ to:

(See equations on page 92, left hand column, of Fisher and Raman paper)

• Z_i^* has the same form as (<u>P</u>), thus can be solved similarly

Sport Opermeyer

Sport Obermeyer Application

> L = 0.4D

 > U_i = wholesale price – variable cost
 > O_i = variable cost – salvage value (a conservative measure)
 > In general, U_i = 3~4O_i

Demand Density Estimation $> D_{i0}$ and D_i follow a bivariate normal distrn

>Estimate μ_{i0} , μ_i , σ_{i0} , σ_i and ρ_i (correlation)

y_{ij} sales estimate of product i
 by member j
 Actual deviation is well correlated
 with predicted standard deviation

Estimate

>Assume that ρ_i is the same for all products within 5 major product categories

>Estimate ρ_I as the correlation between total and initial demand in the previous season

>Let k be the fraction of season sales in period 1 => $\hat{\mu}_{i0} = \hat{k}\hat{u}_i$ >Let δ be the correlation coeff. between D_{i0} and $(D_i - D_{i0}) => \hat{\sigma}_i \left[\rho_i - \delta_i \sqrt{\frac{(1 - \hat{\rho}_i^2)}{(1 - \hat{\delta}_i^2)}} \right]$ (Proposition 1)

Proposition 1

$$\sigma_{io} = \sigma_i \left[\rho_i - \delta_i \sqrt{\frac{(1 - \rho_i^2)}{(1 - \delta_i^2)}} \right]$$

$$\sigma_{i2}$$
 - std of (D_i - D_{i0})

Q-Q plot shows that the student's t distribution with t=2 may be better approximation.

(For equations and explanation, see Proposition 1 on page 95 of the Fisher and Raman paper)

Closed-form solution

Assume that all products have the same Ui and Oi, and have normally distributed demand with the same ρ

(See Theorem 2 on page 96 of the Fisher and Raman paper.)

(See Table 1 on page 97 of the Fisher and Raman paper.)

Bounding Results

(See Figures 6 and 7 on page 98 of the Fisher and Raman paper.)

Summary

- Provides a model for response-based production planning
 A two-stage stochastic program
 Use relaxations to obtain feasible solutions and bounds
- > Results at Sport Obermeyer

Critique

- Clear and practical motivation
- Take advantage of both expert opinion and early demand information
- Simple model
- Some details of the model is not explained very clearly
- > Accuracy of the lower bounds is not discussed
- > Application did not use the approximate method developed in the paper