Reducing the Cost of Demand Uncertainty through Accurate Response to Early Sales

Fisher and Raman 1996
Operations Research, vol. 44 (1), 87-99

Presentation by Hongmin Li

This summary presentation is based on: Fisher, Marshall, and A. Raman. "Reducing the Cost of Demand Uncertainty Through Accurate Response to Early Sales." Operations Research 44, no. 1 (1996): 87-99.

Fashion Industry

$>$ Long lead time
> Unpredictable demand
> Complex Supply Chain

- Enormous inventory loss
- 25% of retail sales
> Lost Sales

Quick Response

$>$ Lead time reduction through

- Efforts in IT,
- Logistics improvement
- Reorganization of production process
> Complications
- Production planning (how much and when)
- Need a method to incorporate observed demand information

This Paper

> Provides a model for response-based production planning
> A two-stage stochastic program
> Use relaxations to obtain feasible solutions and bounds
> Implementation at Sport Obermeyer

Time Line

Notation

$>n$
$>x_{i 0}$
$>x_{i}$
$>D_{i 0}$
(For notation descriptions, see page 90 of the Fisher and Raman paper)
$>D_{i}$
$>O_{i}$
$>U_{i}$
$>K$
$>C_{i}\left(X_{i j} D_{i}\right)=O_{i}\left(x_{i}-D_{i}\right)^{+}+O_{i}\left(D_{i}-x_{i}\right)^{+}$

Notation (2)

$>f_{i}\left(D_{i 0}, D_{i}\right)$
$>g_{i}\left(D_{i 0}\right)$
$>h_{j}\left(D_{i j} \mid D_{i 0}\right)$
$>f\left(D_{0}, D\right)$
(For notation descriptions, see page 90 of the Fisher and Raman paper)
$-g\left(D_{0}\right)$
$>h\left(D \mid D_{0}\right)$

Model

Expected cost of demand mismatch:

$$
\begin{aligned}
& c_{i}\left(x_{i}, D_{i}\right)=O_{i}\left(x_{i}-D_{i}\right)^{+}+U_{i}\left(D_{i}-x_{i}\right)^{+} \\
& c(x, D)=\sum_{i=1}^{n} c_{i}\left(x_{i}, D_{i}\right) \\
& E_{D \mid D_{0}} c(x, D)=\int_{0}^{\infty} c(x, D) h\left(D \mid D_{0}\right) d D
\end{aligned}
$$

Choose x_{0}, observe D_{0}, then choose x to minimize total over and under production cost:

$$
Z^{*}=\min _{x_{0} \geq 0} Z\left(x_{0}\right)=E_{D_{0}} \min _{x_{0} \geq 0} E_{D \mid D_{0}} c(x, D)
$$

(P)

$$
\sum_{i=1}^{n} x_{i} \leq K+\sum_{i=1}^{n} x_{i 0}
$$

$Z\left(x_{0}\right)$ is convex

$c_{i}\left(X_{i j}, D_{j}\right)$ is convex in x_{i}
$\Rightarrow c(x, D)$ convex in x
$\Rightarrow Z^{\perp}\left(x, D_{0}\right)$ convex in x
$\Rightarrow Z^{2}$ convex in x_{0}

However, no closed form expression for x in D_{0}, so convex opt. is not tractable

Approximation to P

"Replace the capacity constraint in $2^{\text {nd }}$ period with a lower limit on total $1^{\text {st }}$ period production"
$x_{0}{ }^{*}$ - optimal value of x_{0}

(P)
(P)

Solve (P) for a Given L

1. Given $h_{i}\left(D_{i j} \mid D_{i 0}\right)$,
$x_{i}^{*}\left(\mathrm{D}_{i 0}\right)=\operatorname{argmin} c_{i}\left(X_{i j} D_{i j}\right)$
(opt. newsboy solution)

$x_{i}=\max \left(X_{i}^{*}\left(D_{i 0}\right), x_{i 0}\right)$ solves min $E_{D i \mid D i 0} c_{i}\left(X_{i j} D_{i}\right)$
Then $\underline{Z}\left(x_{0}\right)$ can be computed using numerical
(P) integration
2. If $D_{i 0}$ and D_{i} are positively correlated,

There exists a $\mathrm{D}_{i 0}{ }^{*}$ s.t. for $\mathrm{D}_{i 0} \leq \mathrm{D}_{i 0}{ }^{*}, x_{i}=x_{i 0}$
and for $D_{i 0}>D_{i 0^{*}}^{*}, x_{i j}=x_{j}^{*}\left(D_{i 0}\right)$
Partials of $\underline{\underline{Z}}$ can be approximated with diffierences $\Rightarrow x_{i 0}{ }^{*}$

Choosing L

$>x_{0}(L)$ - value of x_{0} that solves P with given L
> Use Monte Carlo generation of D_{0} to evaluate $Z\left(X_{0}(L)\right)$
> Choose L by line search algorithm to the problem min $n_{L>=0} Z\left(X_{0}(L)\right)$

Lower bounds on W(L)

Relaxing the constraint $x>=x_{0}$, we get:
$\left(\mathrm{P}_{2}\right)$

$$
\bar{W}_{2}(L)=E_{D_{0}} \min _{x \geq 0} E_{D \mid D_{0}} c(x, D)
$$

$-\underline{W}(\mathrm{~L})$ is a lower bound
> $\underline{W}_{2}(\mathrm{~L})$ is a lower bound (a constrained Newsboy problem that can be solved with lagrangian methods.)
$>\underline{W}(L)$ is smallest when $L=0, \underline{W}_{2}(L)$ is largest when $\mathrm{L}=0$
$\Rightarrow \min _{L>=0} \max \left(\underline{W}(L), \underline{W}_{2}(L)\right)$ is a nontrivial bound on \mathbb{Z}^{*}

Minimum Production Quantities

Let S_{j} defines the sets of products that satisfies a min. initial production level $M_{j}^{0}, j=1, \ldots, m$
(See equations on page 92, left hand column, of Fisher and Raman paper)

The RHS is evaluated by the following problem:
(See equations on page 92 , left hand column, of Fisher and Raman paper)
can be solved similarly as P2

Minimum Production Quantities

> The modified problem can be solved as before with 2 changes:

- Only allow movement away from $x_{d}=0$ to a point that satisfies the min production constraints
- Change the estimation of the derivative of $W(L)$ w.r.t. x_{j}^{j} at $x_{j}^{j}=0$ to:
(See equations on page 92, left hand column, of Fisher and Raman paper)
- Z_{j}^{*} has the same form as (P), thus can be solved similarly

Sport Opermeyer

Sport Obermeyer Application

$>L=0.4 \mathrm{D}$
$>\mathrm{U}_{\mathrm{i}}=$ wholesale price - variable cost
$>\mathrm{O}_{\mathrm{i}}=$ variable cost - salvage value (a conservative measure)
$>$ In general, $U_{i}=3 \sim 4 \mathrm{O}_{\mathrm{i}}$

Demand Density Estimation

$>D_{i 0}$ and D_{i} follow a bivariate normal distrin
-Estimate $\mu_{i_{0},} \mu_{i,}, \sigma_{i 0}, \sigma_{i}$ and ρ_{i} (correlation)
$y_{i j}$ sales estimate of product i by member j
Actual deviation is well correlated with predicted standard deviation

Estimate

$>$ Assume that ρ_{i} is the same for all products within 5 major product categories

- Estimate ρ_{I} as the correlation between total and initial demand in the previous season
$>$ Let k be the fraction of season sales in period 1 $\Rightarrow \hat{\mu}_{i 0}=\hat{k} \hat{u}_{i}$
Let δ be the correlation coeff. between $D_{i 0}$ and
$\left(\mathrm{D}_{\mathrm{i}}-\mathrm{D}_{\mathrm{i} 0}\right) \Rightarrow \hat{\sigma}_{i 0}=\hat{\sigma}_{i}\left[\rho_{i}-\delta_{i} \sqrt{\frac{\left(1-\hat{\rho}_{i}^{2}\right.}{\left(1-\hat{\delta}_{i}^{2}\right)}}\right]$ (Proposition 1)

Proposition 1

$$
\sigma_{i 2}-s t d \text { of }\left(D_{i}-D_{i 0}\right)
$$

(For equations and explanation, see
Proposition 1 on page 95 of the Fisher and Raman paper)

Q-Q plot shows that the student's t distribution with $\mathrm{t}=2$ may be better approximation.

Closed-form solution

Assume that all products have the same Ui and Oi, and have normally distributed demand with the same ρ
(See Theorem 2 on page 96 of the
Fisher and Raman paper.)

Results

(See Table 1 on page 97 of the Fisher and Raman paper.)

Bounding Results

(See Figures 6 and 7 on page 98 of the Fisher and Raman paper.)

Summary

> Provides a model for response-based production planning
> A two-stage stochastic program
> Use relaxations to obtain feasible solutions and bounds

- Results at Sport Obermeyer

Critique

> Clear and practical motivation
> Take advantage of both expert opinion and early demand information
> Simple model
> Some details of the model is not explained very clearly

- Accuracy of the lower bounds is not discussed
- Application did not use the approximate method developed in the paper

