A Simple and Effective Component Procurement Policy for Stochastic Assembly Systems

A paper by Jeremie Gallien and
 Laurence M. Wein

Presentation by Theophane Weber

This summary presentation is based on: Gallien, Jérémie, and Lawrence Wein. "A
Simple and Effective Component Procurement Policy for Stochastic Assembly
Systems." Queueing Systems Theory and Applications 38 (2), 2001.

Introduction

- Framework: Procurement policies for assembly systems
- Make to stock / assemble to order
- Uncapacited / capacited suppliers
- Single / Multi items
- Stochastic / Deterministic

Literature review

- Usually capacitated
- When uncapacitated, usually deterministic
- When stochastic, usually algorithmic / computationally intensive
- Glasserman and Wang develop a simple and effective stochastic, multi items system with capacitated suppliers

The problem

- Make to stock
- Uncapacitated suppliers
o Stochastic supply
o Single item, instantaneous assembly
=> Simple and efficient policy

Presentation

- Model
- Analysis
- Simulation
- Conclusion

Model

- Suppliers
- Cost and objective
- Policies
- Synchronization assumption

Suppliers

(See Figure 1, page 7, in the Gallien and Wein paper.)

Cost and objective

- Z = steady state RV of the net inventory
- $Z^{i}=$ component I, cost h_{i}
- $Z^{+}=\max (Z, 0)$: finished goods, cost h
- Z=max (-Z,0): backorder, cost b
$C=h \cdot E\left[Z^{+}\right]+\sum\left(h_{i} E \cdot\left[Z^{i}\right]+b \cdot E\left[Z^{-}\right]\right)$

Policies

Pre specified class:

- Component base stock policies

$$
\left[s_{1}, s_{2} . ., s_{n}\right]
$$

- Finished goods base stock policies

$$
\left[S, l_{1}, l_{2}, . ., l_{n}\right]
$$

Synchronization assumption

o Assembly performed with components belonging to the same set of replenishement orders

- Typically suboptimal as opposed to asynchronous FCFS behavior

Presentation

- Model
- Analysis
- Simulation
- Conclusion

Analysis

- Problem formulation
- Deterministic lead times
- Approximation for solving
- Gumbel distributions and generalization

Problem formulation

Assembly line Queue:
$Q=n u m b e r ~ o f ~ r e p l e n i s h m e n t s ~$

- Arrival of orders: Poisson (λ)
o Number of servers : infinite
o Service time: $\operatorname{Max}\left(X_{i}+L_{i}\right)$
$=>Q=\operatorname{Poisson}(\rho), \rho=\lambda E\left[\max \left(X_{i}+L_{i}\right)\right]$

Problem formulation

Steady state inventory and back-order

- $Q=$ Poisson $(\rho), \rho=\lambda E\left[\max \left(X_{i}+L_{i}\right)\right]$
- $Z+Q=S$
- $Z=Z^{+}-Z^{-}$
$\rightarrow \mathrm{E}[\mathrm{Z}+]=e^{-\rho} \sum_{j=0}^{S}(S-j) \cdot \frac{p^{j}}{j!}$
$\rightarrow E[Z-]=E[Z+]-S+\rho$

Problem formulation

Component queue (queueing network)
(See Figure 3, Equation 5, and Equation 6, all on page 10 , of the Gallien and Wein paper.)

Deterministic Lead Times

- Separation of S and $\left(I_{1}, I_{2} . ., I_{n}\right)$
- For $\left(I_{1}, I_{2} ., l_{n}\right), S^{*}$ is the smallest integer such that $P\left(Q \leq S^{*}\right) \geq \frac{b}{b+h}$
- Reduction to single variable $l_{i}=\frac{\rho}{\lambda}-X_{i}$
- Resolution: $l_{i}{ }^{*}=\max _{j}\left(X_{j}\right)-X_{i}$
- Interpretation

Approximation

(See page 13, section 3.4 , in the Gallien and Wein paper.)

Gumbel CMT1 Lead times

o Problem: How to find an analytical solution?
o $E\left[\max \left(X_{i}+L_{i}\right)\right]$?
o Distribution with CMT property:
The only uniparameter family is the Gumbel univariance family

Gumbel CMT1

Gumbel CMT1

Gumbel Distributions allow
analytical results

$$
l_{i}^{*}=\max \left(E\left[X_{j}\right]-\frac{\sqrt{6}}{\pi} \cdot \sigma[X] \ln \left(h_{j}\right)\right)-E\left[X_{i}\right]-\frac{\sqrt{6}}{\pi} \cdot \sigma[X] \ln \left(h_{i}\right)
$$

Gumbel CMT2

- Allow different variances
- Numerical results

Presentation

- Model
- Analysis
- Simulation
- Conclusion

Simulation

- Data from HP (Appolo 260 in Exeter)
o Five Policies:
- Proposed
- Numerical I
- Numerical II
- Deterministic
- Independent

Simulation

(See Figures 4-7 in the Gallien and Wein paper.)

Conclusion

- Robust, efficient and simple policy
- Major drawback: Synchronization assumption
- Generalization: multi systems

